Химические методы анализа. Методы исследования в химии Хроматографические методы анализа веществ

Лекция 9. Основы количественного анализа.

1. Классификация методов химического анализа.

2. Типы гравиметрических определений.

3. Общая характеристика гравиметрического метода анализа.

4. Объёмный титриметрический метод анализа.

5. Расчёты в титриметрическом анализе.

6. Методы титриметрического анализа.

Д.З. по уч. Пустоваловой стр. 181-218.

Классификация методов химического анализа.

Кол ичественный ан ализ – Кол.а. - совокупность химических, физико-химических и физических методов определения количественного соотношения компонентов, входящих в состав анализируемого вещества.

Методы количественного анализа:

1) химический (гравиметрия, титриметрия, газовый анализ);

2) физико–химический метод (фотометрия, электрохимический, хроматографический анализ);

3) физически-спектральные: люминесцентный и др.

Наряду с качественным анализом Кол. а. является одним из основных разделов аналитической химии. По количеству вещества, взятого для анализа, различают макро-, полумикро-, микро- и ульт-рамикрометоды К. а. В макрометодах масса пробы составляет обычно >100 мг, объём раствора > 10 мл; в ультрамикрометодах - соответственно 1-10 -1 мг и 10 -3 -10 -6 мл (см. также Микрохимический анализ, Ультрамикрохимический анализ). В зависимости от объекта исследования различают неорганический и органический К. а., разделяемый, в свою очередь, на элементный, функциональный н молекулярный анализ . Элементный анализ позволяет установить содержание элементов (ионов), функциональный анализ - содержание функциональных (реакционноспособных) атомов и групп в анализируемом объекте. Молекулярный К. а. предусматривает анализ индивидуальных химических соединений, характеризующихся определенной молекулярной массой. Важное значение имеет так называемый фазовый анализ - совокупность методов разделения и анализа отдельных структурных (фазовых) составляющих гетерогенных систем. Помимо специфичности и чувствительности (см. Качественный анализ), важная характеристика методов К. а. - точность, то есть значение относительной ошибки определения; точность и чувствительность в К. а. выражают в процентах.

К классическим химическим методам К. а. относятся: гравиметрический анализ, основанный на точном измерении массы определяемого вещества, и объёмный анализ. Последний включает титриметрический объёмный анализ - методы измерения объёма раствора реагента, израсходованного на реакцию с анализируемым веществом, и газовый объёмный анализ - методы измерения объёма анализируемых газообразных продуктов (см. Титриметрический анализ, Газовый анализ).

Наряду с классическими химическими методами широко распространены физические и физико-химические (инструментальные) методы К. а., основанные на измерении оптических, электрических, адсорбционных, каталитических и других характеристик анализируемых веществ, зависящих от их количества (концентрации). Обычно эти методы делят на следующие группы: электрохимические (кондуктометрия, полярография, потенциометрия и др.); спектральные или оптические (эмиссионный и абсорбционный спектральный анализ, фотометрия, колориметрия, нефелометрия, люминесцентный анализ и др.); рентгеновские (абсорбционный и эмиссионный рентгеноспектральный анализ, рентгенофазовый анализ и др.); хроматографический (жидкостная, газовая, газо-жидкостная хроматография и др.); радиометрические (активационный анализ и др.); масс-спектрометрические. Перечисленные методы, уступая химическим в точности, существенно превосходят их по чувствительности, избирательности, скорости выполнения. Точность химических методов К. а. находится обычно в пределах 0,005-0,1%; ошибки определения инструментальными методами составляют 5-10%, а иногда и значительно больше. Чувствительность некоторых методов К. а. приведена ниже (%):

Объёмный.......................................................10 -1

Гравиметрический......................................... 10 -2

Эмиссионный спектральный.........................10 -4

Абсорбционный рентгеноспектральный...... 10 -4

Масс-спектрометрический.............................10 -4

Кулонометрический....................................... 10 -5

Люминесцентный.......................................... 10 -6 -10 -5

Фотометрический колориметрический......... 10 -7 -10 -4

Полярографический.........................................10 -8 -10 -6

Активационный................................................10 -9 -10 -8

При использовании физических и физико-химических методов К. а. требуются, как правило, микроколичества веществ. Анализ может быть в ряде случаев выполнен без разрушения пробы; иногда возможна также непрерывная и автоматическая регистрация результатов. Эти методы используются для анализа веществ высокой чистоты, оценки выходов продукции, изучения свойств и строения веществ и т.д. См. также Электрохимические методы анализа, Спектральный анализ, Хроматография, Кинетические методы анализа, Нефелометрия, Колориметрия, Активационный анализ.

1) химические методы анализа:

Гравиметрический – основан на определение массы вещества, выделяемого в чистом виде или в виде соединения известного состава.

положительная сторона «+» - дает результат высокой прочности,

отрицательная сторона «-» - очень трудоемкая работа.

Титриметрический - (объёмный) - основан на точном измерении реактива, затраченного на реакцию с определенным компонентом. Реактив берется в виде раствора определенной концентрации (титрованный раствор).

Высокая скорость выполнения анализа;

Менее точный результат по сравнению с гравиметрией.

В зависимости от типа реакций, протекающих в процессе титрования, выделяют следующие методы:

Методы кислотно-основного титрования,

Метод восстановительного титрования,

Метод осаждения,

Комплексообразование.

2) Физико-химический метод - основанный на измерении поглощения, пропускания, рассеивания света определяемым раствором.

Для большинства фотометрических методов используют оценку интенсивности окраски раствора визуально или с помощью соответствующих приборов.

Применяется для определенного компонента, входящего в состав анализируемого вещества в очень малых количествах;

Точность метода ниже, чем в гравиметрии и титриметрии.

Электрохимические методы - электрогравиметрический анализ, кондуктометрия, потенциометрия и полярография.

Хроматографический метод - основан на использовании явления избирательной адсорбции раствора вещества и ионов различными веществами или адсорбентами: Al 2 O 3 , силикагель, крахмал, тальк,

пермутид, синтетические смолы и другие вещества.

Применение: как в количественном анализе, так и в качественном анализе, особенно широко применяемы для определения вещества и ионов.

Анализ вещества может проводиться с целью установление качественного или количественного его состава. В соответствии с этим различают качественный и количественный анализ.

Качественный анализ позволяет установить, из каких химических элементов состоит анализируемое вещество и какие ионы, группы атомов или молекулы входят в его состав. При исследовании состава неизвестного вещества качественный анализ всегда предшествует количественному, так как выбор метода количественного определения составных частей анализируемого вещества зависит от данных, полученных при его качественном анализе.

Качественный химический анализ большей частью основывается на превращении анализируемого вещества в какое - нибудь новое соединение, обладающее характерными свойствами: цветом, определенным физическим состоянием, кристаллической или аморфной структурой, специфическим запахом и т.п. Химическое превращение, происходит при этом, называют качественной аналитической реакцией, а вещества, вызывающие это превращение, называют реактивами (реагентами).

При анализе смеси нескольких веществ, близких по химическим свойствам, их предварительно разделяют и только затем проводят характерные реакции на отдельные вещества (или ионы), поэтому качественный анализ охватывает не только отдельные реакции обнаружения ионов, но и методы их разделения.

Количественный анализ позволяет установить количественные соотношения частей данного соединения или смеси веществ. В отличии от качественного анализа количественный анализ дает возможность определить содержание отдельный компонентов анализируемого вещества или общее содержание определяемого вещества в исследуемом продукте.

Методы качественного и количественного анализа, позволяющие определить в анализируемом веществе содержание отдельных элементов, называют элементами анализа; функциональных групп - функциональным анализом; индивидуальных химических соединений, характеризующихся определенным молекулярным весом, - молекулярным анализом.

Совокупность разнообразных химических, физических и физико - химических методов разделения и определения отдельных структурных (фазовых) составляющих гетерогенных систем, различающихся по свойствам и физическому строению и ограниченных друг от друга поверхностями раздела, называют фазовым анализом.

Методы качественного анализа

В качественном анализе для установления состава исследуемого вещества используют характерные химические или физические свойства этого вещества. Совершенно нет необходимости выделять открываемые элементы в чистом виде, что бы обнаружить их присутствие в анализируемом веществе. Однако выделение в чистом виде металлов, неметаллов и их соединений иногда используется в качественном анализе для их идентификации, хотя такой путь анализа весьма труден. Для обнаружения отдельных элементов пользуются более простыми и удобными методами анализа, основанными на химических реакциях, характерных для ионов данных элементов и протекающих при строго определенных условиях.

Аналитическим признаком присутствия в анализируемом соединении искомого элемента является выделение газа, отличающегося специфическим запахом; в другом - выпадении осадка, характеризующегося определенным цветом.

Реакции, протекающее между твердыми веществами и газами. Аналитические реакции могут протекать не только в растворах, но имежду твердыми, а также и газообразными веществами.

Примером реакции между твердыми веществами является реакция выделение металлической ртути при нагревании сухих солей ее с карбонатом натрия. Образование белого дыма при взаимодействии газообразного аммиака с хлористым водородом может служить примером аналитической реакции с участием газообразных веществ.

Реакции, применяемые в качественном анализе можно подразделить на следующие группы.

1. Реакции осаждения, сопровождающиеся образованием осадков различных цвета. Например:

CaC2O4 - белого цвета

Fe43 - синий,

CuS - коричнево - желтый

HgI2 - красный

MnS - телесно - розовый

PbI2 - золотистый

Образующиеся осадки могут отличаться определенной кристаллической структурой, растворимостью в кислотах, щелочах, аммиака и т.п.

2. Реакции, сопровождающиеся образованием газов, обладающих известным запахом, растворимостью и т.д.

3. Реакции, сопровождающиеся образованием слабых электролитов. К числу таких реакций, в результате который образуются:CH3COOH, H2F2, NH4OH, HgCl2, Hg(CN)2, Fe(SCN)3 и т.п. Реакциями этого же типа можно считать реакции кислотно - основного взаимодействия, сопровождающиеся образованием нейтральных молекул воды, реакции образования газов и малорастворимых в воде осадков и реакции комплексообразования.

4. Реакции кислотно- основного взаимодействия, сопровождающиеся переходом протонов.

5. Реакции комплексообразования, сопровождающиеся присоединения к атомам комплексообразователя различных легандов - ионов и молекул.

6. Реакции комплексообразования, связанные с кислотно - основным взаимодействием

7. Реакции окисления - восстановления, сопровождающиеся переходом электронов.

8. Реакции окисления - восстановления, связанные с кислотно - основным взаимодействием.

9. Реакции окисления - восстановления, вязанные с комплексообразованием.

10. Реакции окисления - восстановления, сопровождающиеся образованием осадков.

11. Реакции ионного обмена, протекающие на катионитах или анионитах.

12. Каталитические реакции, используемые в кинетических методах анализа

Анализ мокрым и сухим путем

Реакции, применяемые в качественном химическом анализе, чаще всего проводят в растворах. Анализируемое вещество сначала растворяют, а затем действуют на полученный раствор соответствующими реактивами.

Для растворения анализируемого вещества применяют дистиллированную воду, уксусную и минеральные кислоты, царскую водку, водный раствор аммиака, органические растворители и т.п. Чистота применимых растворителей является важным условием для получения правильных результатов.

Переведенное в раствор вещество подвергают систематическому химическому анализу. Систематический анализ состоит из ряд предварительных испытаний и последовательно выполняемых реакций.

Химический анализ исследуемых веществ в растворах называют анализо мокрым путем.

В некоторых случаях вещества анализируют сухим путем, без перевода их в раствор. Чаще всего такой анализ сводиться к испытанию способности вещества окрашивать бесцветное пламя горелки в характерный цвет или придавать определенную окраску плаву (так называемую перлу), полученному при нагревании вещества с тетраборатом натрия (бурой) или фосфатом натрия ("фосфорной солью") в ушке из платиновой проволоки.

Химический и физический метод качественного анализа.

Химические методы анализа. Методы определения состава веществ, основанные на использовании их химических свойств, называют химическими методами анализа.

Химические методы анализа широко применяют в практике. Однако они имеют ряд недостатков. Так, для определения состава данного вещества иногда необходимо предварительно отделить определяемую составную часть от посторонних примесей и выделить ее в чистом виде. Выделение веществ в чистом виде часто составляет очень трудную, а иногда и невыполнимую задачу. Кроме того, для определения малых количеств примесей (менее 10"4%), содержащихся в анализируемом веществе, приходится иногда брать большие пробы.

Физические методы анализа. Присутствие того или иного химического элемента в образце можно обнаружить и не прибегая к химическим реакциям, основываясь непосредственно на изучении физических свойств исследуемого вещества, например окрашивании бесцветного пламени горелки в характерные цвета летучими соединениями некоторых химических элементов.

Методы анализа, при помощи которых можно определить состав исследуемого вещества, не прибегая к использованию химических реакций, называют физическими методами анализа. К физическим методам анализа относятся методы, основанные на изучении оптических, электрических, магнитных, тепловых и других физических свойств анализируемых веществ.

К числу наиболее широко применяемых физических методов анализа относятся следующие.

Спектральный качественный анализ. Спектральный анализ основан на наблюдении эмиссионных спектров (спектров испускания, или излучения) элементов, входящих в состав анализируемого вещества.

Люминесцентный (флуоресцентный) качественный анализ. Люминесцентный анализ основан на наблюдении люминесценции (излучение света) анализируемых веществ, вызываемой действием ультрафиолетовых лучей. Метод применяется для анализа природных органических соединений, минералов, медицинских препаратов, ряда элементов и др.

Для возбуждения свечения исследуемое вещество или его раствор облучают ультрафиолетовыми лучами. При этом атомы вещества, поглотив определенное количество энергии, переходят в возбужденное состояние. Это состояние характеризуется большим запасом энергии, чем нормальное состояние вещества. При переходе вещества от возбужденного к нормальному состоянию возникает люминесценция за счет избыточной энергии.

Люминесценцию, очень быстро затухающую после прекращения облучения, называют флуоресценцией.

Наблюдая характер люминесцентного свечения и измеряя интенсивность, или яркость люминесценции соединения или его растворов, можно судить о составе исследуемого вещества.

В ряде случаев определения ведут на основании изучения флуоресценции, возникающей в результате взаимодействия определяемого вещества с некоторыми реактивами. Известны также люминесцентные индикаторы, применяемые для определения реакции среды по изменению флуоресценции раствора. Люминесцентные индикаторы применяют при исследовании окрашенных сред.

Рентгеноструктурный анализ. С помощью рентгеновских лучей можно установить размеры атомов (или ионов) и их взаимное расположение в молекулах исследуемого образца, т. е. оказывается возможным определить структуру кристаллической решетки, состав вещества и иногда наличие в нем примесей. Метод не требует химической обработки вещества и больших его количеств.

Масс-спектрометрический анализ. Метод основан на определении отдельных ионизированных частиц, отклоняемых электромагнитным полем в большей или меньшей степени в зависимости от отношения их массы к заряду (подробнее см. книга 2).

Физические методы анализа, имея ряд преимуществ перед химическими, в некоторых случаях дают возможность решать вопросы, которые не удается разрешить методами химического анализа; пользуясь физическими методами, можно разделить элементы, трудно разделяемые химическими методами, а также вести непрерывную и автоматическую регистрацию показаний. Очень часто физические методы анализа применяют наряду с химическими, что позволяет использовать преимущества тех и других методов. Сочетание методов имеет особенно важное значение при определении в анализируемых объектах ничтожных количеств (следов) примесей.

Макро-, полумикро- и микрометоды

Анализ больших и малых количеств исследуемого вещества. В прежнее время химики пользовались для анализа большими количествами исследуемого вещества. Для того чтобы определить состав какого-либо вещества, брали пробы в несколько десятков граммов и растворяли их в большом объеме жидкости. Для этого требовалась и химическая посуда соответстэующей емкости.

В настоящее время химики обходятся в аналитической практике малыми количествами веществ. В зависимости от количества анализируемого вещества, объема растворов, используемых для анализа, и главным образом от применяемой техники выполнения эксперимента, методы анализа делят на макро-, полумикро- и микрометоды.

При выполнении анализа макрометодом для проведения реакции берут несколько миллилитров раствора, содержащего не менее 0,1 г вещества, и к испытуемому раствору добавляют не менее 1 мл раствора реактива. Реакции проводят в пробирках. При осаждении получают объемистые осадки, которые отделяют фильтрованием через воронки с бумажными фильтрами.

Капельный анализ

Техника проведения реакций в капельном анализе. Большое значение в аналитической химии приобрел так называемый капельный анализ, введенный в аналитическую практику Н. А. Тананаевым.

При работе этим методом большое значение имеют явления капиллярности и адсорбции, при помощи которых можно открывать и разделять различные ионы при их совместном присутствии. При капельном анализе отдельныеи реакции проводят на фарфоровых или стеклянных пластинках или на фильтровальной бумаге. При этом на пластинку или бумагу наносят каплю испытуемого раствора и каплю реактива, вызывающего характерное окрашивание или образование кристаллов.

При выполнении реакции на фильтровальной бумаге используют капиллярно-адсорбционные свойства бумаги. Жидкость всасывается бумагой, а образующееся окрашенное соединение адсорбцируется на небольшом участке бумаги, вследствие чего повышается чувствительность реакции.

Микрокристаллоскопический анализ

Микрокристаллоскопический метод анализа основан на обнаружении катионов и анионов при помощи реакции, в результате которых образуется соединение, обладающие характерной формой кристаллов.

Раньше этот метод применялся в качественном микрохимическом анализе. В настоящее время он используется также и в капельном анализе.

Для рассмотрения образующихся кристаллов в микрокристаллоскопическом анализе пользуются микроскопом.

Кристаллы характерной формы пользуются при работе с чистыми веществами путем внесения капли раствора или кристаллика реактива в каплю исследуемого вещества, помещенную на предметном стекле. Через некоторое время появляются ясно различимые кристаллы определенной формы и цвета.

Метод растирания порошка

Для обнаружения некоторых элементов иногда применяют метод растирания в фарфоровой пластинке порошкообразного анализируемого вещества с твердым реагентом. Открываемый элемент обнаруживается по образованию характерных соединений, отличающихся по цвету или запаху.

Методы анализа, основанные на нагревании и сплавлении вещества

Пирохимический анализ. Для анализа веществ применяют также методы, основанные на нагревании испытуемого твердого вещества или его сплавлении с соответствующими реагентами. Одни вещества при нагревании плавятся при определенной температуре, другие возгоняются, причем на холодных стенках прибора появляются характерные для каждого вещества осадки; некоторые соединения при нагревании разлагаются с выделением газообразных продуктов и т. д.

При нагревании анализируемого вещества в смеси с соответствующими реагентами происходят реакции, сопровождающиеся изменением цвета, выделением газообразных продуктов, образованием металлов.

Спектральный качественный анализ

Помимо описанного выше способа наблюдения невооруженным глазом за окрашиванием бесцветного пламени при внесении в него платиновой проволоки с анализируемым веществом в настоящее время широко используются другие способы исследования света, излучаемого раскаленными парами или газами. Эти способы основаны на применении специальных оптических приборов, описание которых дается в курсе физики. В такого рода спектральных приборах происходит разложение в спектр света с различными длинами волн, испускаемого образцом накаленного в пламени вещества.

В зависимости от способа наблюдения спектра спектральные приборы называют спектроскопами, с помощью которых ведут визуальное наблюдение спектра, или спектрографами, в которых спектры фотографируются.

Хроматографический метод анализ

Метод основан на избирательном поглощении (адсорбции) отдельных компонентов анализируемой смеси различными адсорбентами. Адсорбентами называют твердые тела, на поверхности которых происходит поглощение адсорбируемого вещества.

Сущность хроматографического метода анализа кратко заключается в следующем. Раствор смеси веществ, подлежащих разделению, пропускают через стеклянную трубку (адсорбционную колонку), заполненную адсорбентом.

Кинетические методы анализа

Методы анализа, основанные на измерении скорости реакции и использовании ее величины для определения концентрации, объединяются под общим названием кинетических методов анализа (К. Б. Яцимирский).

Качественное обнаружение катионов и анионов кинетическими методами выполняется довольно быстро и сравнительно просто, без применения сложных приборов.

1. Отбор проб:

Лабораторная проба состоит 10–50 г. материала, который отбирается так, чтобы его средний состав соответствовал среднему составу всей партии анализируемого вещества.

2. Разложение пробы и переведение ее в раствор;

3. Проведение химической реакции:

X – определяемый компонент;

P – продукт реакции;

R – реагент.

4. Измерение какого-либо физического параметра продукта реакции, реагента или определяемого вещества.

Классификация химических методов анализа

I По компонентам реакции

1. Измеряют количество, образовавшегося продукта реакции Р (гравиметрический способ). Создают условия при которых определяемое вещество полностью превращается в продукт реакции; далее нужно чтобы реагент Rне давал второстепенных продуктов реакции с посторонними веществами, физические свойства которых были бы сходны с физическими свойствами продукта.

2. Основан на измерении количества реагента, израсходованного на реакцию с определяемым веществом Х:

– воздействие между X и R должно проходить стехиометрически;

– реакция должна протекать быстро;

– реагент не должен вступать в реакцию с посторонним веществами;

– необходим способ установления точки эквивалентности, т.е. момент титрования когда реагент прибавлен в эквивалентном количестве (индикатор, изменение окраски, о-в потенциала, электропроводности).

3. Фиксирует изменения, происходящие с самим определяемым веществом Х, в процессе взаимодействия с реагентом R (газовый анализ).

II Типы химических реакций

1. Кислотно-основные.

2. Образование комплексных соединений.

Кислотно-основные реакции: используют в основном для прямого количественного определения сильных и слабых кислот и оснований, и их солей.

Реакции образования комплексных соединений: определяемые вещества действием реагентов переводят в комплексные ионы и соединения.

На реакциях комплексообразования основаны следующие методы разделения и определения:

1) Разделение по средствам осаждения;

2) Метод экстракции (нерастворимые в воде комплексные соединения не редко хорошо растворяются в органических растворителях – бензол, хлороформ – процесс перевода комплексных соединений из водных фаз в дисперсную называется экстракцией);

3) Фотометрический (Со с нитрозной солью) – измеряют оптимальную плотность растворов комплексных соединений;

4) Титриметрический метод анализа

5) Гравиметрический метод анализа.

1) метод цементации – восстановление Ме ионов металлов в растворе;

2) электролиз с ртутным катодом – при электролизе раствора с ртутным катодом ионы многих элементов восстанавливаются электрическим током до Ме, которые растворяются в ртути, образуя амальгаму. Ионы других Ме остаются при этом в растворе;

3) метод идентификации;

4) титриметрические методы;

5) электрогравиметрический – через исследуемый раствор пропускают эл. ток определенного напряжения, при этом ионы Ме восстанавливаются до Ме состояния, выделившийся взвешивают;

6) кулонометрический метод – количество вещества определяют по количеству электричества, которое необходимо затратить для электрохимического превращения анализируемого вещества. Реагенты анализа находят по закону Фарадея:

М – количество определяемого элемента;

F– число Фарадея (98500 Кл);

А – атомная масса элемента;

n– количество электронов, принимающих участие в электрохимическом превращении данного элемента;

Q– количество электричества (Q = I ∙ τ).

7) каталитический метод анализа;

8) полярографический;

III Классификация методов разделения, основанных на использовании различных типов фазовых превращений:

Известны такие типы равновесий между фазами:

Равновесие Ж-Г или Т-Г используется в анализе при выделении веществ в газовую фазу (СО 2 , Н 2 О и т.д.).

Равновесие Ж 1 – Ж 2 наблюдается в методе экстракции и при электролизе с ртутным катодом.

Ж-Т характерно для процессов осаждения и процессов выделения на поверхности твердой фазы.

К методам анализа относят:

1. гравиметрический;

2. титриметрический;

3 оптический;

4. электрохимический;

5. каталитический.

К методам разделения относят:

1. осаждение;

2. экстракция;

3. хроматография;

4. ионный обмен.

К методам концентрирования относят:

1. осаждение;

2. экстракция;

3. цементация;

4. отгонка.

Физические методы анализа

Характерная особенность в том, что в них непосредственно измеряют какие-либо физические параметры системы, связанные с количеством определяемого элемента без предварительного проведения химической реакции.

Физические методы включают три главные группы методов:

I Методы, основанные на взаимодействии излучения с веществом или на измерении излучения вещества.

II Методы, основанные на измерении параметров эл. или магнитныхсвойств вещества.

IIIМетоды, основанные на измерении плотности или других параметров механических или молекулярных свойств веществ.

Методы, основанные на энергетическом переходе внешних валентных электронов атомов: включают атомно-эмиссионные и атомно-абсорбционные методы анализа.

Атомно-эмиссионный анализ:

1) Фотометрия пламени – анализируемый раствор распыляют в пламени газовой горелки. Под влиянием высокой температуры, атомы переходят в возбужденное состояние. Внешние валентные электроны переходят на более высокие энергетические уровни. Обратный переход электронов на основной энергетический уровень сопровождается излучением, длинна волны которого зависит от того, атомы какого элемента находились в пламени. Интенсивность излучения при определенных условиях пропорционально количеству атомов элемента в пламени, а длинна волны излучения характеризуют качественный состав пробы.

2) Эмиссионный метод анализа – спектральный. Пробу вводят в пламя дуги или конденсированной искры, под высокой температурой атомы переходят в возбужденное состояние, при этом электроны переходят не только на ближайшие к основному, но и на более отдаленные энергетические уровни.

Излучение представляет сложную смесь световых колебаний разных длин волн. Эмиссионный спектр разлагают на основные части спец. приборами, спектрометрами, и фотографируют. Сравнение положения интенсивности отдельных линий спектра с линиями соответствующего эталона, позволяет определить качественный и количественный анализ пробы.

Атомно-абсорбционные методы анализа:

Метод основан на измерении поглощении света определенной длины волны невозбужденными атомами определяемого элемента. Специальный источник излучения дает резонансное излучение, т.е. излучение соответствующее переходу электронной на найнизшую орбиталь с наименьшей энергией, с ближайшей к ней орбитали с более высоким уровнем энергии. Уменьшение интенсивности света при прохождении его через пламя за счет перевода электронов атомов определяемого элемента в возбужденное состояние пропорционально количеству невозбужденных атомов в нем. В атомной абсорбции применяют горючие смеси с температурой до 3100 о С, что увеличивает количество определяемых элементов, в сравнении с фотометрии пламени.

Рентгено-флуорисцентный и рентгено-эмиссионный

Рентгено-флуорисцентный: пробу подвергают действию рентгеновского излучения. Верхние электроны. Находящиеся на ближайшей к ядру атома орбитали выбиваются из атомов. Их место занимают электроны с более отдаленных орбиталей. Переход этих электронов сопровождается возникновением вторичного рентгеновского излучения, длинна волны которого связана функциональной зависимостью с атомным номером элемента. Длинна волны – качественный состав пробы; интенсивность – количественный состав пробы.

Методы, основанные на ядерных реакциях – радиоактивационные. Материал подвергают действию нейтронного излучения, происходят ядерные реакции и образуются радиоактивные изотопы элементов. Далее пробу пробу переводят в раствор и разделяют элементы химическими методами. После чего измеряют интенсивность радиоактивного излучения каждого элемента пробы, параллельно анализируют эталонную пробу. Сравнивают интенсивность радиоактивного излучения отдельных фракций эталонной пробы и анализируемого материала и делают выводы о количественном содержании элементов. Предел обнаружения 10 -8 – 10 -10 %.

1. Кондуктометрический – основан на измерении электропроводности растворов или газов.

2. Потенциометрический – бывает метод прямой и потенциометрического титрования.

3. Термоэлектрический – основан на возникновении термоэлектродвижущей силы, возникший при нагревании места соприкосновения стали и др. Ме.

4. Массспектральный – применяется при помощи сильных элементов и магнитных полей, происходит разделение газовых смесей на компоненты в соответствии с атомами или молекулярными массами компонентов. Применяется при исследовании смеси изотопов. инертных газов, смесей органических веществ.

Денситометрия – основана на измерении плотности (определение концентрации веществ в растворах). Для определения состава измеряют вязкость, поверхностное натяжение, скорость звука, электропроводность и т.д.

Для установления чистоты веществ измеряют температуру кипения или температуру плавления.

Прогнозирование и расчет физико-химических свойств

Теоретические основы прогнозирования физико-химических свойств веществ

Приближенный расчет прогнозирования

Прогнозирование подразумевает оценку физико-химических свойств на основании минимального числа легкодоступных исходных данных, а может и полагать полное отсутствие экспериментальной информации о свойствах исследуемого вещества (» абсолютное» прогнозирование опирается только на сведенья о стехиометрической формуле соединения).

Количественный анализ выражается последовательностью экспериментальных методов, определяющих в образце исследуемого материала содержание (концентрации) отдельных составляющих и примесей. Его задача - определить количественное соотношение химсоединений, ионов, элементов, составляющих образцы исследуемых веществ.

Задачи

Качественный и количественный анализ являются разделами аналитической химии. В частности, последний решает различные вопросы современной науки и производства. Этой методикой определяют оптимальные условия проведения химико-технологических процессов, контролируют качество сырья, степень чистоты готовой продукции, в том числе и лекарственных препаратов, устанавливают содержание компонентов в смесях, связь между свойствами веществ.

Классификация

Методы количественного анализа подразделяют на:

  • физические;
  • химические (классические);
  • физико-химические.

Химический метод

Базируется на применении различных видов реакций, количественно происходящих в растворах, газах, телах и т. д. Количественный химический анализ подразделяют на:

  • Гравиметрический (весовой). Заключается в точном (строгом) определении массы анализируемого компонента в исследуемом веществе.
  • Титриметрический (объемный). Количественный состав исследуемой пробы определяют путем строгих измерений объема реагента известной концентрации (титранта), который взаимодействует в эквивалентных количествах с определяемым веществом.
  • Газовый анализ. Базируется на измерении объема газа, который образуется или поглощается в результате химической реакции.

Химический количественный анализ веществ считается классическим. Это наиболее разработанный метод анализа, который продолжает развиваться. Он точен, прост в исполнении, не требует спецаппаратуры. Но применение его иногда сопряжено с некоторыми трудностями при исследовании сложных смесей и сравнительно небольшой чертой чувствительности.

Физический метод

Это количественный анализ, базирующийся на измерении величин физических параметров исследуемых веществ или растворов, которые являются функцией их количественного состава. Подразделяется на:

  • Рефрактометрию (измерение величин показателя преломления).
  • Поляриметрию (измерение величин оптического вращения).
  • Флуориметрию (определение интенсивности флуоресценции) и другие

Физическим методам присущи экспрессность, низкий предел определения, объективность результатов, возможность автоматизации процесса. Но они не всегда специфичны, так как на физическую величину влияет не только концентрация исследуемого вещества, но и присутствие других веществ и примесей. Их применение часто требует использования сложной аппаратуры.

Физико-химические методы

Задачи количественного анализа - измерение величин физических параметров исследуемой системы, которые появляются или изменяются в результате проведения химических реакций. Эти методы характеризуются низким пределом обнаружения и скоростью исполнения, требуют применения определенных приборов.

Гравиметрический метод

Это старейшая и наиболее разработанная технология количественного анализа. По сути, аналитическая химия началась с гравиметрии. Комплекс действий позволяет точно измерять массу определяемого компонента, отделенного от других компонентов проверяемой системы в постоянной форме химического элемента.

Гравиметрия является фармакопейным методом, который отличается высокой точностью и воспроизводимостью результатов, простотой исполнения, однако трудоемок. Включает приемы:

  • осаждения;
  • отгонки;
  • выделения;
  • электрогравиметрию;
  • термогравиметрические методы.

Метод осаждения

Количественный анализ осаждения основан на химической реакции определяемого компонента с реагентом-осадителем с образованием малорастворимого соединения, которое отделяют, затем промывают и прокаливают (высушивают). На финише выделенный компонент взвешивают.

Например, при гравиметрическом определении ионов Ва 2+ в растворах солей как осадитель используют серную кислоту. В результате реакции образуется белый кристаллический осадок BaSO 4 (осажденная форма). После прожарки этого осадка формируется так называемая гравиметрическая форма, полностью совпадающая с осажденной формой.

При определении ионов Са 2+ осадителем может быть оксалатная кислота. После аналитической обработки осадка осажденная форма (СаС 2 О 4) превращается в гравиметрическую форму (СаО). Таким образом, осажденная форма может как совпадать, так и отличаться от гравиметрической формы по химической формуле.

Весы

Аналитическая химия требует высокоточных измерений. В гравиметрическом методе анализа используют особо точные весы как основной прибор.

  • Взвешивания при требуемой точности ±0,01 г проводят на аптечных (ручных) или технохимических весах.
  • Взвешивания при требуемой точности ±0,0001 г осуществляют на аналитических весах.
  • При точности ±0,00001 г - на микротерезах.

Техника взвешивания

Осуществляя количественный анализ, определение массы вещества на технохимических или технических весах проводят следующим образом: исследуемый предмет помещают на левую чашу весов, а уравновешивающие грузики - на правую. Процесс взвешивания заканчивают при установлении стрелки весов в среднем положении.

В процессе взвешивания на аптечных весах центральное кольцо удерживают левой рукой, локтем опираясь на лабораторный стол. Затухание коромысла во время взвешивания может быть ускорено легким прикосновением дна чаши весов к поверхности стола.

Аналитические весы монтируют в отдельных отведенных лабораторных помещениях (весовых комнатах) на специальных монолитных полках-подставках. Для предотвращения влияния колебаний воздуха, пыли и влаги весы защищают специальными стеклянными футлярами. Во время работы с аналитическими весами следует придерживаться следующих требований и правил:

  • перед каждым взвешиванием проверяют состояние весов и устанавливают нулевую точку;
  • взвешиваемые вещества помещают в тару (бюкс, часовое стекло, тигель, пробирку);
  • температуру веществ, подлежащих взвешиванию, доводят до температуры весов в весовой комнате в течение 20 минут;
  • весы не следует нагружать сверх установленных предельных нагрузок.

Этапы гравиметрии по методу осаждения

Гравиметрический качественный и количественный анализ включают следующие этапы:

  • расчета масс навески анализируемой пробы и объема осадителя;
  • взвешивания и растворения навески;
  • осаждения (получение осажденной формы определяемого компонента);
  • удаления осадков из маточного раствора;
  • промывания осадка;
  • высушивания или прокаливания осадка до постоянной массы;
  • взвешивания гравиметрической формы;
  • вычисления результатов анализа.

Выбор осадителя

При выборе осадителя - основы количественного анализа - учитывают возможное содержание анализируемого компонента в пробе. Для увеличения полноты удаления осадка используют умеренный избыток осадителя. Используемый осадитель должен обладать:

  • специфичностью, селективностью относительно определяемого иона;
  • летучестью, легко удаляться при высушивании или прокаливании гравиметрической формы.

Среди неорганических осадителей наиболее распространены растворы: HCL; Н 2 SO 4 ; H 3 PO 4 ; NaOH; AgNO 3 ; BaCL 2 и другие. Среди органических осадителей предпочтение отдается растворам диацетилдиоксима, 8-гидроксихинолина, оксалатной кислоте и другим, образующим с ионами металлов внутрикомплексные устойчивые соединения, обладающие преимуществами:

  • Комплексные соединения с металлами, как правило, имеют незначительную растворимость в воде, обеспечивая полноту осаждения ионов металла.
  • Адсорбционная способность внутрикомплексных осадков (молекулярная кристаллическая решетка) ниже адсорбционной способности неорганических осадков с ионным строением, что дает возможность получить чистый осадок.
  • Возможность селективного или специфического осаждения ионов металла в присутствии других катионов.
  • Благодаря относительно большой молекулярной массе гравиметрических форм уменьшается относительная ошибка определения (в противовес использованию неорганических осадителей с небольшой молярной массой).

Процесс осаждения

Это важнейший этап характеристики количественного анализа. При получении осажденной формы необходимо минимизировать расходы за счет растворимости осадка в маточном растворе, уменьшить процессы адсорбции, окклюзии, соосаждения. Требуется получить достаточно крупные частицы осадка, не проходящие через фильтрационные поры.

Требования к осажденной форме:

  • Компонент, который определяют, должен количественно переходить в осадок и соответствовать значению Ks≥10 -8 .
  • Осадок не должен содержать посторонних примесей и быть устойчивым относительно внешней среды.
  • Осажденная форма должна как можно полнее превращаться в гравиметрическую при высушивании или прокаливании исследуемого вещества.
  • Агрегатное состояние осадка должно соответствовать условиям его фильтрации и промывки.
  • Предпочтение отдают кристаллическим осадком, содержащим крупные частицы, имеющим меньшую абсорбционную способность. Они легче фильтруются, не забивая поры фильтра.

Получение кристаллического осадка

Условия получения оптимального кристаллического осадка:

  • Осаждения проводят в разбавленном растворе исследуемого вещества разведенным раствором осадителя.
  • Добавляют раствор осадителя медленно, каплями, при осторожном перемешивании.
  • Осаждения проводят в горячем растворе исследуемого вещества горячим растворителем.
  • Иногда осаждения проводят при наличии соединений (например, небольшого количества кислоты), которые незначительно повышают растворимость осадка, но не образуют с ним растворимых комплексных соединений.
  • Осадок оставляют в исходном растворе на некоторое время, в течение которого происходит «вызревание осадка».
  • В случаях, когда осажденная форма образуется в виде аморфного осадка, его пытаются получить гуще для упрощения фильтрации.

Получение аморфного осадка

Условия получения оптимального аморфного осадка:

  • К горячему концентрированному раствору исследуемого вещества добавляют концентрированный горячий раствор осадителя, что способствует коагуляции частиц. Осадок становится гуще.
  • Добавляют осадитель быстро.
  • При необходимости в исследуемый раствор вводят коагулянт - электролит.

Фильтрация

Методы количественного анализа включают такой важный этап, как фильтрация. Фильтрование и промывание осадков проводят, используя или стеклянные фильтры, или бумажные, не содержащие золы. Бумажные фильтры различны по плотности и размерам пор. Плотные фильтры маркируются голубой лентой, менее плотные - черной и красной. Диаметр бумажных фильтров, не содержащих золы, 6-11 см. Перед фильтрацией сливают прозрачный раствор, находящийся над осадком.

Электрогравиметрия

Количественный анализ может осуществляться методом электрогравиметрии. Исследуемый препарат удаляют (чаще всего из растворов) в процессе электролиза на одном из электродов. После окончания реакции электрод промывают, высушивают и взвешивают. По увеличению массы электрода определяют массу вещества, образовавшегося на электроде. Так анализируют сплав золота и меди. После отделения золота в растворе определяют ионы меди, скапливаемые на электроде.

Термогравиметрический метод

Осуществляется измерением массы вещества во время его непрерывного нагрева в определенном интервале температур. Изменения фиксируются специальным устройством - дериватографом. Оно оборудовано термотерезами непрерывного взвешивания, электрической печью для нагрева исследуемого образца, термопарой для измерения температур, эталоном и самописцем непрерывного действия. Изменение массы образца автоматически фиксируется в виде термогравиграмы (дериватограмы) - кривой изменения массы, построенной в координатах:

  • время (или температура);
  • потеря массы.

Вывод

Результаты количественного анализа должны быть точными, правильными и воспроизводимыми. С этой целью используют соответствующие аналитические реакции или физические свойства вещества, правильно выполняют все аналитические операции и применяют надежные способы измерения результатов анализа. Во время выполнения любого количественного определения обязательно должна проводиться оценка достоверности результатов.

Химический анализ исследуемых веществ осуществляют с помощью химических, физических и физико-химических методов, а так же биологических.

Химические методы основаны на использовании химических реакций, сопровождающихся наглядным внешним эффектом, например изменением окраски раствора, растворением или выпадением осадка, выделением газа. Это самые простые методы, но не всегда точные, на основании одной реакции нельзя точно установить состав вещества.

Физические и физико-химические методы в отличие от химических называют инструментальными, так как для проведения анализа применяют аналитические приборы и аппараты, регистрирующие физические свойства вещества или изменения этих свойств.

При проведении анализа физическим методом не используют химическую реакцию, а измеряют какое-либо физическое свойство вещества, которое является функцией его состава. Например, в спектральном анализе исследуют спектры излучения вещества и по наличию в спектре линий, характерных для данных элементов, определяют их наличие, а по яркости линий – их количественное содержание. При внесении в пламя газовой горелки сухого вещества можно установить наличие некоторых компонентов, например, ионы калия окрасят бесцветное пламя в фиолетовый цвет, а натрия – в желтый. Эти методы точные, но дорогостоящие.

При проведении анализа физико-химическим методом состав вещества определяют на основании измерения какого-либо физического свойства с помощью химической реакции. Например, в колориметрическом анализе по степени поглощения светового потока, проходящего через окрашенный раствор, определяют концентрацию вещества.

Биологические методы анализа основаны на применении живых организмов в качестве аналитических индикаторов для определения качественного или количественного состава химических соединений. Самым известным биоиндикатором являются лишайники, очень чувствительные к содержанию в окружающей среде сернистого ангидрида. Для этих целей также применяют микроорганизмы, водоросли, высшие растения, беспозвоночные, позвоночные, органы и ткани организмов. Например, микроорганизмы, жизнедеятельность которых может измениться под действием некоторых химических веществ, используют для анализа природных или сточных вод.

Методы химического анализа применяют в различных сферах народного хозяйства: в медицине, сельском хозяйстве, в пищевой промышленности, в металлургии, в производстве строительных материалов (стекла, керамики), нефтехимии, энергетике, криминалистике, археологии и т.д.

Для фельдшеров-лаборантов изучение аналитической химии необходимо, так как большинство биохимических анализов являются аналитическими: определение рН желудочного сока с помощью титрования, уровня гемоглобина, СОЭ, соли кальция и фосфора в крови и моче, исследование спинномозговой жидкости, слюны, ионов натрия и калия в плазме крови и т.д.

2. Основные этапы развития аналитической химии.

1. Наука древних.

Согласно историческим данным, еще император Вавилона (VI век до н.э.) писал об оценке содержания золота. Древнеримский писатель, ученый и государственный деятель Плиний Старший (I век н.э.) упоминает об использовании экстракта дубильных орешков в качестве реактива на железо. Уже тогда были известны несколько способов определения чистоты олова, в одном из них расплавленное олово лили на папирус, если он прогорал, то олово чистое, если нет, значит, в олове есть примеси.

С глубокой древности известен первый аналитический прибор – весы. Вторым по времени появления прибором можно считать ареометр, который был описан в трудах древнегреческих ученых. Многие способы обработки веществ, применяемые в химических ремеслах древних (фильтрование, высушивание, кристаллизация, кипячение), вошли в практику аналитических исследований.

2. Алхимия – реализация химиками стремления общества получить золото из неблагородных металлов (IV – XVI века). В поисках философского камня алхимики установили состав сернистых соединений ртути (1270 г.), хлористый кальций (1380 г.), научились производить ценные химические продукты, такие как эфирное масло (1280 г.), порох (1330 г.).

3. Иатрохимия или медицинская химия – в этот период основным направлением химических знаний было получение лекарств (ХVI-XVII века).

В этот период появились многие химические способы обнаружения веществ, основанные на переводе их в раствор. В частности, была открыта реакция иона серебра с хлорид-ионом. В этот период было открыто большинство химических реакций, составляющих основу качественного анализа. Было введено понятие «осаждение», «осадок».

4. Эпоха флогистона: «флогистон» - особая «субстанция», которая якобы определяет механизм процессов горения (в XVII-XVIII века огонь используется в целом ряде химических ремесел, таких как производство железа, фарфора, стекла, красок). При помощи паяльной лампы был установлен качественный состав многих минералов. Крупнейший аналитик XVIII века Т.Бергман открыл дорогу современной металлургии, определив точное содержание углерода в различных образцах железа, полученного с использованием каменного угля, создал первую схему качественного химического анализа.

Основателем же аналитической химии как науки считается Р.Бойль (1627-1691 гг.), который ввел термин «химический анализ», применил различные реактивы при проведении качественного анализа, например нитрат серебра для определения соляной кислоты, соли меди обнаруживал добавлением избытка аммиака. В качестве индикаторов для определения кислот и гидроксидов он использовал настойки фиалок, васильков.

Работы Ломоносова М.В. также принадлежат этому времени, он отрицал наличие флогистона, впервые ввел в практику химических исследований количественный учет реагентов химических процессов и по праву считается одним из основоположников количественного анализа. Он впервые применил микроскоп при изучении качественных реакций и по форме кристаллов делал выводы о содержании тех или иных ионов в исследуемом веществе.

5. Период научной химии (XIX-XX века) развитие химической промышленности.

В.М.Севергин (1765-1826 гг.) разработал колориметрический анализ.

Французский химик Ж. Гей-Люссак (1778-1850) разработал титриметрический анализ, широко применяемый до сегодняшнего дня.

Немецкий ученый Р.Бунзен (1811-1899) основал газовый анализ и совместно с Г.Кирхгофом (1824-1887) разработали спектральный анализ.

Русский химик Ф.М.Флавицкий (1848-1917) в 1898 г. разработал методику обнаружения ионов реакциями «сухим путем».

Шведский химик А.Вернер (1866-1919 гг.) создал координационную теорию, на основе которой ведется изучение строения комплексных соединений.

В 1903 г. М.С. Цвет разработал хроматографический метод.

6. Современный период.

Если в предыдущий период аналитическая химия развивалась в ответ на социальные запросы промышленности, то на современном этапе развитию аналитической химии движет осознание экологической ситуации современности. Это средства контроля за ОС, сельскохозяйственной продукцией, фармация. Исследования в области космонавтики, морских вод также предполагают дальнейшую разработку АХ.

Современные инструментальные методы АХ, такие как нейтронно-активационный, атомно-адсорбционный, атомно-эмиссионный, инфракрасная спектрометрия позволяют определять предельно низкие значения веществ, применяются для определения высокотоксичных загрязнителей (пестицидов, диоксинов, нитрозаминов и др.).

Таким образом, этапы развития аналитической химии тесно взаимосвязаны с прогрессом общества.

3. Основные классы неорганических соединений: оксиды, классификация, физ. и хим. св-ва, получение.

Оксиды – это сложные вещества, состоящие из атомов кислорода и элемента (металла или неметалла).

I. Классификация оксидов.

1) cолеобразующие, которые реагируя с кислотами или основаниями, образуют соли (Na 2 O , P 2 O 5 , CaO , SO 3)

2) несолеобразующие, которые с кислотами или основаниями не образуют солей (СО, NO, SiO 2 , N 2 O).

В зависимости от того, с чем реагируют оксиды, их делят на группы:

кислотные, реагирующие со щелочами с образованием соли и воды: Р 2 О 5 , SO 3 , CO 2 , N 2 O 5 , CrO 3 , Mn 2 O 7 и другие. Это оксиды металлов и неметаллов в высокой степени окисления;

основные, реагирующие с кислотами с образованием соли и воды: ВаО, К 2 О, СаО, МgO, Li 2 O, FeO и др. Это оксиды металлов.

амфотерные, реагирующие и с кислотами, и с основаниями с образованием соли и воды: Аl 2 O 3 , ZnO , BeO , Cr 2 O 3 , Fe 2 O 3 и др.

II. Физические свойства.

Оксиды бывают твердыми, жидкими и газообразными.

III. Химические свойства оксидов.

А. Химические свойства кислотных оксидов.

Кислотные оксиды.

S +6 O 3 → H 2 SO 4 Mn +7 2 O 7 → HMn +7 O 4

P +5 2 O 5 → H 3 P +5 O 4 P +3 2 O 3 → H 3 P +3 O 3

N +3 2 O 3 → HN +3 O 3 N +5 2 O 5 → HN +5 O 3

Реакция кислотных оксидов с водой:

кислотный оксид + вода = кислота

SO 3 + H 2 O = H 2 SO 4

Реакция кислотных оксидов с основаниями:

оксид + основание = соль + вода

CO 2 + NaOH = Na 2 CO 3 + H 2 O

При реакциях кислотных оксидов со щелочами возможно и образование кислых солей при избытке кислотного оксида.

СО 2 + Са(ОН) 2 = Са(НСО 3) 2

Реакция кислотных оксидов с основными оксидами:

оксид кислотный + основной оксид = соль

CO 2 + Na 2 O = Na 2 CO 3

В. Химические свойства основных оксидов.

Этим оксидам металлов соответствуют основания. Существует следующая генетическая взаимосвязь:

Na → Na 2 O → NaOH

Реакция основных оксидов с водой:

основной оксид + вода = основание

К 2 О + Н 2 О = 2КОН

С водой реагируют оксиды только некоторых металлов (литий, натрий, калий, рубидий, стронций, барий)

Реакция основных оксидов с кислотами:

оксид + кислота = соль + вода

MgO + 2HCl = MgCl 2 + H 2 O

Если в такой реакции кислота взята в избытке, то, конечно, получится кислая соль.

Na 2 O + H 3 PO 4 = Na 2 HPO 4 + H 2 O

Реакция основных оксидов с кислотными оксидами:

основной оксид + кислотный оксид = соль

CaO + CO 2 = CaCO 3

В. Химические свойства амфотерных оксидов.

Это оксиды, которые в зависимости от условий проявляют свойства основных и кислотных оксидов.

Реакция с основаниями:

амфотерный оксид + основание = соль + вода

ZnO + KOH = K 2 ZnO 2 + H 2 O

Реакция с кислотами:

амфотерный оксид + кислота = соль + вода

ZnO + 2HNO 3 = Zn(NO 3) 2 + H 2 O

3. Реакции с кислотными оксидами: t

амфотерный оксид + основной оксид = соль

ZnO + CO 2 = ZnCO 3

4. Реакции с основными оксидами: t

амфотерный оксид + кислотный оксид = соль

ZnO + Na 2 O = Na 2 ZnO 2

IV. Получение оксидов.

1. Взаимодействие простых веществ с кислородом:

металл или неметалл + O 2 = оксид

2. Разложение некоторых кислородсодержащих кислот:

Оксокислота = кислотный оксид + вода t

H 2 SO 3 = SO 2 + H 2 O

3. Разложение нерастворимых оснований:

Нерастворимое основание = основной оксид + вода t

Сu(OH) 2 = CuO + H 2 O

4. Разложение некоторых солей:

соль = основной оксид + кислотный оксид t

CaCO 3 = CaO + CO 2

4.Основные классы неорганических соединений: кислоты, классификация, физ. и хим. св-ва, получение.

Кислота – это сложное соединение, содержащее ионы водорода и кислотного остатка.

кислота = nН + + кислотный остаток - n

I. Классификация

Кислоты бывают неорганические (минеральные) и органические.

бескислородные (НСl, HCN)

По числу ионов Н + , образующихся при диссоциации, определяется основность кислот:

одноосновные (НСl, HNO 3)

двухосновные (H 2 SO 4 , H 2 CO 3)

трехосновные (H 3 PO 4)

II. Физические свойства.

Кислоты бывают:

растворимые в воде

нерастворимые в воде

Почти все кислоты кислые на вкус. Некоторые из кислот имеют запах: уксусная, азотная.

III. Химические свойства.

1. Изменяют окраску индикаторов: лакмус окрашивается в красный цвет;

метиловый оранжевый – красный; фенолфталеин – бесцветный.

2. Реакция с металлами:

Отношение металлов к разбавленным кислотам зависит от их положения в электрохимическом ряду напряжений металлов. Металлы, стоящие левее водорода Н в этом ряду, вытесняют его из кислот. Исключение: при взаимодействии азотной кислоты с металлами водород не выделяется.

кислота + металл = соль + Н 2

H 2 SO 4 + Zn = ZnSO 4 + Н 2

3. Реакция с основаниями (нейтрализация):

кислота + основание = соль + вода

2НСl + Cu(OH) 2 = CuCl 2 + H 2 O

В реакциях с многоосновными кислотами или многокислотными основаниями могут быть не только средние соли, но и кислые или основные:

НСl + Cu(OH) 2 = CuОНCl + H 2 O

4. Реакция с основными и амфотерными оксидами:

кислота + основной оксид = соль + вода

2НСl + СаО = СаСl 2 + H 2 O

5. Реакция с солями:

Эти реакции возможны в том случае, если в результате их образуется нерастворимая соль или более сильная кислота, чем исходная.

Сильная кислота всегда вытесняет более слабую:

HCl > Н 2 SO 4 > HNO 3 > H 3 PO 4 > H 2 CO 3

кислота 1 + соль 1 = кислота 2 + соль 2

НСl + AgNO 3 = AgCl↓ + HNO 3

6. Реакция разложения: t

кислота = оксид + вода

Н 2 CO 3 = CO 2 + H 2 O

IV. Получение.

1. Бескислородные кислоты получают путем синетза их из простых веществ и последующим растворением полученного продукта в воде.

Н 2 + Cl 2 = НСl

2. Кислородсодержащие кислоты получают взаимодействием кислотных оксидов с водой:

SO 3 + H 2 O = Н 2 SO 4

3. Большинство кислот можно получить взаимодействием солей с кислотами.

2Na 2 CO 3 + НСl = H 2 CO 3 + NaСl

5.Основные классы неорганических соединений: соли, классификация, физ. и хим. св-ва, получение.

Соли – сложные вещества, продукты полного или частичного замещения водорода в кислотах на атомы металла или гидроксогрупп в основаниях на кислотный остаток.

Иными словами, в простейшем случае соль состоит из атомов металла (катионов) и кислотного остатка (аниона).

Классификация солей.

В зависимости от состава соли бывают:

средние (FeSO 4 , Na 2 SO 4)

кислые (KH 2 PO 4 – дигидрофосфат калия)

основные (FeOH(NO 3) 2 – гидроксонитрат железа)

двойные (Na 2 ZnO 2 – цинкат натрия)

комплексные (Na 2 – тетрагидроксоцинкат натрия)

I. Физические свойства:

Большинство солей – твердые вещества белого цвета (Na 2 SO 4 , KNO 3). Некоторые соли имеют окраску. Например, NiSO 4 - зеленого, CuS - черного, CoCl 3 – розового).

По растворимости в воде соли бывают растворимые, нерастворимые и малорастворимые.

II. Химические свойства.

1. Соли в растворах реагируют с металлами:

соль 1 + металл 1 = соль 2 + металл 2

CuSO 4 + Fe = FeSO 4 + Cu

Соли могут вступать во взаимодействие с металлами, если металл, которому соответствует катион соли, находится в ряду напряжений правее реагирующего свободного металла.

2. Реакция солей с кислотами:

соль 1 + кислота 1 = соль 2 + кислота 2

BaCl 2 + H 2 SO 4 = BaSO 4 + 2HCl

С кислотами реагируют соли:

а) катионы которых образуют с анионами кислоты нерастворимую соль;

б) анионы которых соответствуют неустойчивым или летучим кислотам;

в) анионы которых соответствуют малорастворимым кислотам.

3. Реакция солей с растворами оснований:

соль 1 + основание 1 = соль 2 + основание 2

FeCl 3 + 3KOH = Fe(OH) 3 + 3KCl

Со щелочами реагируют только соли:

а) катионам металлов которых соответствуют нерастворимые основания;

б) анионам которых соответствуют нерастворимые соли.

4. Реакция солей с солями:

соль 1 + соль 2 = соль 3 +соль 4

AgNO 3 + KCl = AgCl↓ + KNO 3

Соли взаимодействуют между собой, если одна из полученных солей нерастворима или разлагается с выделением газа или осадка.

5. Многие соли разлагаются при нагревании:

MgCO 3 = CO 2 + MgO

6. Основные соли взаимодействуют с кислотами с образованием средних солей и воды:

Основная соль + кислота = средняя соль + Н 2 О

CuOHCl + HCl = CuCl 2 + Н 2 О

7. Кислые соли взаимодействуют с растворимыми основаниями (щелочами) с образованием средних солей и воды:

Кислая соль + кислота = средняя соль + Н 2 О

NaHSO 3 + NaOH = Na 2 SO 3 + Н 2 О

III. Способы получения солей.

Способы получения солей основаны на химических свойствах основных классов неорганических веществ – оксидов, кислот, оснований.

6.Основные классы неорганических соединений: основания, классификация, физ. и хим. св-ва, получение

Основания – это сложные вещества, содержащие ионы металла и одну или несколько гидроксогрупп (ОН -).

Число гидроксогрупп соответствует степени окисления металла.

По числу гидроксильных групп основания делят:

однокислотные (NaOH)

двукислотные (Сa(OH) 2)

многокислотные (Al(OH) 3)

По растворимости в воде:

растворимые (LiOH, NaOH, KOH, Ba(OH) 2 и др.)

нерастворимые (Cu(OH) 2 , Fe(OH) 3 и др.)

I . Физические свойства:

Все основания представляют собой твердые кристаллические вещества.

Особенностью щелочей является их мыльность на ощупь.

II. Химические свойства.

1. Реакция с индикаторами.

основание + фенолфталеин = малиновое окрашивание

основание + метиловый оранжевый = желтое окрашивание

основание + лакмус = синее окрашивание

Нерастворимые основания окраску индикаторов не изменяют.

2. Реакция с кислотами (реакция нейтрализации):

основание + кислота = соль + вода

КОН + НСl = КСl + H 2 O

3. Реакция с кислотными оксидами:

основание + кислотный оксид = соль + вода

Са(ОН) 2 + СО 2 = СаСО 3 + H 2 O

4. Реакция оснований с амфотерными оксидами:

основание + амфотерный оксид = соль + вода

5. Реакция оснований (щелочей) с солями:

основание 1 + соль 1 = основание 2 + соль 2

КОН + CuSO 4 = Сu(OH) 2 ↓ + K 2 SO 4

Для протекания реакции необходимо, чтобы реагирующие основание и соль были растворимы, а полученное основание или (и) соль выпадали бы в осадок.

6. Реакция разложения оснований при нагревании: t

основание = оксид + вода

Сu(OH) 2 = СuO + H 2 O

Гидроксиды щелочных металлов устойчивы к нагреванию (исключение – литий).

7. Реакция амфотерных оснований с кислотами и щелочами.

8. Реакция щелочей с металлами:

Растворы щелочей взаимодействуют с металлами, которые образуют амфотерные оксиды и гидроксиды (Zn, Al, Cr)

Zn + 2NaOH = Na 2 ZnO 2 + H 2

Zn + 2NaOH + H 2 O = Na 2 + H 2

IV. Получение.

1. Получить растворимое основание можно взаимодействием щелочных и щелочноземельных металлов с водой:

К + H 2 O = КОН + H 2

2. Получить растворимое основание можно взаимодействием оксидов щелочных и щелочноземельных металлов с водой.