Действие ионизирующего. Виды излучения и взаимодействие ионизирующего излучения с веществом

В повседневной жизни человека ионизирующие излучения встречаются постоянно. Мы их не ощущаем, но не можем отрицать их воздействия на живую и неживую природу. Не так давно люди научились использовать их как во благо, так и в качестве оружия массового истребления. При правильном использовании эти излучения способны изменить жизнь человечества в лучшую сторону.

Виды ионизирующих излучений

Чтобы разобраться с особенностями влияния на живые и неживые организмы, нужно выяснить, какими они бывают. Также важно знать их природу.

Ионизирующее излучение - это особенные волны, которые способны проникать через вещества и ткани, вызывая ионизацию атомов. Существует несколько его видов: альфа-излучение, бета-излучение, гамма-излучение. Все они имеют разный заряд и способности действовать на живые организмы.

Альфа-излучение самое заряженное из всех видов. Оно обладает огромной энергией, способной даже в малых дозах вызывать лучевую болезнь. Но при непосредственном облучении проникает только в верхние слои кожи человека. От альфа-лучей защищает даже тонкий лист бумаги. В то же время, попадая в организм с едой или со вдохом, источники этого излучения довольно быстро становятся причиной смерти.

Бета-лучи несут немного меньший заряд. Они способны проникать глубоко в организм. При длительном облучении становятся причиной смерти человека. Меньшие дозы вызывают изменение в клеточной структуре. Защитой может послужить тонкий лист алюминия. Излучение изнутри организма также смертельно.

Самым опасным считается гамма-излучение. Оно проникает насквозь организма. В больших дозах вызывает радиационный ожог, лучевую болезнь, смерть. Защитой от него может быть только свинец и толстый слой бетона.

Особенной разновидностью гамма-излучения считаются рентгеновские лучи, которые генерируются в рентгеновской трубке.

История исследований

Впервые об ионизирующих излучениях мир узнал 28 декабря 1895 года. Именно в этот день Вильгельм К. Рентген объявил, что открыл особый вид лучей, способных проходить через разные материалы и человеческий организм. С этого момента многие врачи и ученые начали активно работать с этим явлением.

Длительное время никто не знал о его влиянии на человеческий организм. Поэтому в истории известно немало случаев гибели от чрезмерного облучения.

Супруги Кюри подробно изучили источники и свойства, которые имеет ионизирующее излучение. Это дало возможность использовать его с максимальной пользой, избегая негативных последствий.

Естественные и искусственные источники излучений

Природа создала разнообразные источники ионизирующего излучения. В первую очередь это радиация солнечных лучей и космоса. Большая ее часть поглощается озоновым шаром, который находится высоко над нашей планетой. Но некоторая их часть достигает поверхности Земли.

На самой Земле, а точнее в ее глубинах, есть некоторые вещества, продуцирующие радиацию. Среди них - изотопы урана, стронция, радона, цезия и другие.

Искусственные источники ионизирующих излучений созданы человеком для разнообразных исследований и производства. При этом сила излучений может в разы превышать естественные показатели.

Даже в условиях защиты и соблюдения мер безопасности люди получают опасные для здоровья дозы облучения.

Единицы измерения и дозы

Ионизирующее излучение принято соотносить с его взаимодействием с человеческим организмом. Поэтому все единицы измерения так или иначе связаны со способностью человека поглощать и накапливать энергию ионизации.

В системе СИ дозы ионизирующего излучения измеряются единицей, именуемой грей (Гр). Она показывает количество энергии на единицу облучаемого вещества. Один Гр равен одному Дж/кг. Но для удобства чаще используется внесистемная единица рад. Она равна 100 Гр.

Радиационный фон на местности измеряется экспозиционными дозами. Одна доза равна Кл/кг. Эта единица используется в системе СИ. Внесистемная единица, соответствующая ей, называется рентген (Р). Чтобы получить поглощенную дозу 1 рад, нужно поддаться облучению экспозиционной дозой около 1 Р.

Поскольку разные виды ионизирующих излучений имеют разный заряд энергии, его измерение принято сравнивать с биологическим влиянием. В системе СИ единицей такого эквивалента выступает зиверт (Зв). Внесистемный его аналог - бэр.

Чем сильнее и дольше излучение, тем больше энергии поглощается организмом, тем опаснее его влияние. Чтобы узнать допустимое время пребывания человека в радиационном загрязнении, используются специальные приборы - дозиметры, осуществляющие измерение ионизирующего излучения. Это бывают как приборы индивидуального пользования, так и большие промышленные установки.

Влияние на организм

Вопреки бытующему мнению, не всегда опасно и смертельно любое ионизирующее излучение. Это можно увидеть на примере с ультрафиолетовыми лучами. В малых дозах они стимулируют генерацию витамина D в человеческом организме, регенерацию клеток и увеличение пигмента меланина, дающего красивый загар. Но длительное облучение вызывает сильные ожоги и может стать причиной развития рака кожи.

В последние годы активно изучается воздействие ионизирующего излучения на человеческий организм и его практическое применение.

В небольших дозах излучения не причиняют никакого вреда организму. До 200 милирентген могут снизить количество белых кровяных клеток. Симптомом такого облучения будут тошнота и головокружение. Около 10% людей гибнут, получив такую дозу.

Большие дозы вызывают расстройство пищеварительной системы, выпадение волос, ожоги кожи, изменения клеточной структуры организма, развитие раковых клеток и смерть.

Лучевая болезнь

Длительное действие ионизирующего излучения на организм и получение им большой дозы облучения могут стать причиной лучевой болезни. Больше половины случаев этого заболевания ведут к летальному исходу. Остальные становятся причиной целого ряда генетических и соматических заболеваний.

На генетическом уровне происходят мутации в половых клетках. Их изменения становятся очевидными в следующих поколениях.

Соматические болезни выражаются канцерогенезом, необратимыми изменениями в разных органах. Лечение этих заболеваний длительное и довольно трудное.

Лечение лучевых поражений

В результате патогенного воздействия радиации на организм возникают различные поражения органов человека. В зависимости от дозы облучения проводят разные методы терапии.

В первую очередь больного помещают в стерильную палату, чтобы избежать возможности инфицирования открытых пораженных участков кожи. Далее проводят специальные процедуры, способствующие скорому выведению из организма радионуклидов.

При сильных поражениях может понадобиться пересадка костного мозга. От радиации он теряет способность воспроизводить красные кровяные клетки.

Но в большинстве случаев лечение легких поражений сводится к обезболиванию пораженных участков, стимулированию регенерации клеток. Большое внимание уделяется реабилитации.

Влияние ионизирующего излучения на старение и рак

В связи с влиянием ионизирующих лучей на организм человека ученые проводили разные эксперименты, доказывающие зависимость процессов старения и канцерогенеза от дозы облучения.

В лабораторных условиях подвергались облучениям группы клеточных культур. Вследствие этого удалось доказать, что даже незначительное облучение способствует ускорению старения клеток. При этом чем старше культура, тем больше она подвержена этому процессу.

Длительное же облучение приводит к гибели клеток или аномальному и быстрому их делению и росту. Этот факт свидетельствует о том, что ионизирующее излучение на организм человека оказывает канцерогенное действие.

В то же время воздействие волн на пораженные раковые клетки приводило к их полной гибели или остановке процессов их деления. Это открытие помогло разработать методику лечения раковых опухолей человека.

Практическое применение радиации

Впервые излучения начали использовать в медицинской практике. С помощью рентгеновских лучей врачам удалось заглянуть внутрь человеческого организма. При этом вреда ему практически не наносилось.

Далее с помощью облучения начали лечить раковые заболевания. В большинстве случаев этот метод оказывает положительное влияние, невзирая на то что весь организм подвергается сильному воздействию излучения, влекущему за собой ряд симптомов лучевой болезни.

Кроме медицины, ионизирующие лучи используются и в других отраслях. Геодезисты с помощью радиации могут изучить особенности строения земной коры на ее отдельных участках.

Способность некоторых ископаемых выделять большое количество энергии человечество научилось использовать в собственных целях.

Атомная энергетика

Именно за атомной энергией будущее всего населения Земли. Атомные электростанции выступают источниками сравнительно недорогого электричества. При условии их правильной эксплуатации такие электростанции намного безопаснее, чем ТЭС и ГЭС. От атомных электростанций намного меньше загрязнения окружающей среды как лишним теплом, так и отходами производства.

В то же время на основании атомной энергии ученые разработали оружие массового поражения. На данный момент на планете атомных бомб столько, что запуск незначительного их количества может стать причиной ядерной зимы, вследствие которой погибнут практически все живые организмы, населяющие ее.

Средства и способы защиты

Использование в повседневной жизни радиации требует серьезных мер предосторожности. Защита от ионизирующих излучений делится на четыре типа: временем, расстоянием, количеством и экранированием источников.

Даже в среде с сильным радиационным фоном человек может находиться некоторое время без вреда для своего здоровья. Именно этот момент определяет защиту временем.

Чем больше расстояние до источника излучения, тем меньше доза поглощаемой энергии. Поэтому стоит избегать близкого контакта с местами, где есть ионизирующее излучение. Это гарантированно убережет от нежелательных последствий.

Если есть возможность использовать источники с минимальным излучением, им в первую очередь отдается предпочтение. Это и есть защита количеством.

Экранирование же означает создание барьеров, через которые не проникают вредоносные лучи. Примером тому служат свинцовые ширмы в рентгеновских кабинетах.

Бытовая защита

В случае объявления радиационной катастрофы следует немедленно закрыть все окна и двери, постараться запастись водой из закрытых источников. Еда должна быть только консервированной. При перемещении на открытой местности максимально закрыть тело одеждой, а лицо - респиратором или влажной марлей. Стараться не заносить в дом верхнюю одежду и обувь.

Необходимо также приготовиться к возможной эвакуации: собрать документы, запас одежды, воды и еды на 2-3 суток.

Ионизирующие излучения как экологический фактор

На планете Земля довольно много загрязненных радиацией участков. Причиной тому служат как естественные процессы, так и техногенные катастрофы. Самые известные из них - авария на ЧАЭС и атомные бомбы над городами Хиросима и Нагасаки.

В таких местах человек не может находиться без вреда для собственного здоровья. В то же время не всегда есть возможность узнать заранее о радиационном загрязнении. Порой даже некритический радиационный фон может стать причиной катастрофы.

Причиной тому служит способность живых организмов поглощать и накапливать радиацию. При этом они сами превращаются в источники ионизирующего излучения. Всем известные «черные» анекдоты о чернобыльских грибах основаны именно на этом свойстве.

В таких случаях защита от ионизирующих излучений сводится к тому, что все потребительские продукты поддаются тщательному радиологическому изучению. В то же время на стихийных рынках всегда есть шанс купить именно знаменитые «чернобыльские грибы». Поэтому стоит воздержаться от покупок у непроверенных продавцов.

Человеческий организм склонен накапливать опасные вещества, вследствие чего происходит постепенное отравление изнутри. Неизвестно, когда именно дадут о себе знать последствия влияния этих ядов: через день, год или через поколение.

  • 11. Антропометрические характеристики человека
  • 12. Работоспособность человека и ее динамика
  • 13. Надежность работы человека-оператора. Критерии оценки
  • 14.Анализаторы и органы чувств человека.Строение анализатора.Виды анализаторов.
  • 15. Характеристика анализаторов человека.
  • 16.Строение и характеристики зрительного анализатора.
  • 17.Строение и характеристики слухового анализатора
  • 18.Строение и характеристики тактильного, обонятельного и вкусового анализатора.
  • 19. Основные психофизические законы восприятия
  • 20.Энергетические затраты человека при различных видах деятельности. Методы оценки тяжести труда.
  • 21. Параметры микроклимата производственных помещений.
  • 22. Нормирование параметров микроклимата.
  • 23. Инфракрасное излучение. Воздействие на организм человека. Нормирование. Защита
  • 24. Вентиляция производственных помещений.
  • 25.Кондиционирование воздуха
  • 26. Потребный воздухообмен в производственных помещениях. Методы расчета.
  • 27. Вредные вещества, их классификации. Виды комбинированного действия вредных веществ.
  • 28. Нормирование содержания вредных веществ в воздухе.
  • 29. Производственное освещение. Основные характеристики. Требования к системе освещения.
  • 31. Методы расчета искусственного освещения. Контроль производственного освещения.
  • 32.Понятие шума. Характеристика шума как физического явления.
  • 33. Громкость звука. Кривые равной громкости.
  • 34. Воздействие шума на организм человека
  • 35.Классификации шума
  • 2 Классификация по характеру спектра и временным характеристикам
  • 36.Гигиеническое нормирование шума
  • 37. Методы и средства защиты от шума
  • 40.Вибрация.Классификация вибрации по способу создания, по способу передачи человеку, по характеру спектра.
  • 41.Вибрация. Классификация вибрации по месту возникновения, по частотному составу, по временным хар-м
  • 3) По временным характеристикам:
  • 42. Характеристики вибрации. Действие вибрации на организм человека
  • 43.Методы нормир-я вибрации и нормируемые параметры.
  • 44.Методы и средства защиты от вибрации
  • 46. Зоны эл.Магнитного излучения. Возд-ие эмп на чел-ка.
  • 49. Методы и средства зашиты от неионизирующих электромагнитных излучений.
  • 50 Особенности воздействия лазерного излучения на организм человека. Нормирование. Зашита.
  • 51. Ионизирующие излучения. Виды ионизирующих излучений, основные характеристики.
  • 52. Ионизирующие излучения. Дозы ионизирующих излучений и единицы их измерения.
  • 55. Виды воздействия эл. Тока на человека. Факторы, влияющие на исход поражения человека эл. Током.
  • 56. Основные схемы линий электропередач. Схемы прикосновения человека к линиям эл/передач.
  • 57. Пороговые значения постоянного и переменного эл. Тока. Виды эл/травм.
  • 58. Напряжение прикосновения. Напряжение шага. 1 помощь пострадавшим от воздействия эл. Тока.
  • 59. Защитное заземление, виды защитного заземления.
  • 60. Зануление, защитное отключение и др. Средства защиты в эл/установках.
  • 62. Пожаробезопасность. Опасные факторы пожара.
  • 63.Виды горения.Виды процесса возникновения.
  • 64.Характеристики пожароопасности веществ
  • 65. Классификация веществ и материалов по пожарной опасности. Классификация производств и зон по пожароопасности
  • 66. Классификация электрооборудования по пожаровзрывоопасности и пожарной опасности.
  • 67. Пожарная профилактика в производственных зданиях
  • 68. Методы и средства тушения пожаров
  • 69.Нпа по охране труда
  • 70. Обязанности работодателя в области охраны труда на предприятии
  • 72.Расследование нс на производстве
  • 73.Управление охраной окружающей среды(оос)
  • 74.Эколог-е нормирование.Виды экологических нормативов
  • 75 Экологическое лицензирование
  • 76. Инженерная защита окружающей среды. Основные процессы, лежащие в основе средозащитных технологий
  • 77. Методы и основные аппараты для очистки от пылевоздушных примесей
  • 78.Методы и основные аппараты для очистки газовоздушных примесей
  • 1. Абсорбсер
  • 2.Адсорбер
  • 3.Хемосорбция
  • 4.Аппарат термической нейтрализации
  • 79. Методы и основные аппараты очистки сточных вод.
  • 80. Отходы и их виды. Методы переработки и утилизации отходов.
  • 81. Чрезвычайные ситуации: основные определения и классификация
  • 82. Чс природного, техногенного и экологического характера
  • 83. Причины возникновения и стадии развития чс
  • 84. Поражающие факторы техногенных катастроф: понятие, классификация.
  • 85. Поражающие факторы физического действия и их параметры. «Эффект домино»
  • 86.Прогнозирование химической обстановки при авариях на хоо
  • 87. Цели, задачи и структура рсчс
  • 88. Устойчивость функционирования промышленных объектов и систем
  • 89. Мероприятия по ликвидации последствий чс
  • 90. Оценка риска технических систем. Концепция «удельной смертности»
  • 51. Ионизирующие излучения. Виды ионизирующих излучений, основные характеристики.

    ИИ делятся на 2 вида:

      Корпускулярное излучение

    - 𝛼-излучение представляет собой поток ядер гелия, испускаемых веществом при радиоактивном распаде или при ядерных реакциях;

    - 𝛽-излучение – поток электронов или позитронов, возникающих при радиоактивном распаде;

    Нейтронное излучение (При упругих взаимодействиях происходит обычная ионизация вещества. При неупругих взаимодействиях возникает вторичное излучение, которое может состоять как из заряженных частиц, так и -квантов).

    2. Электромагнитное излучение

    - 𝛾-излучение – это электромагнитное (фотонное) излучение, испускаемое при ядерных превращениях или взаимодействии частиц;

    Рентгеновское излучение – возникает в среде, окружающей источ-ник -излучения, в рентгеновских трубках.

    Характеристики ИИ: энергия (МэВ); скорость (км/с); пробег (в воздухе, в живой ткани); ионизирующая способность (пар ионов на 1 см пути в воздухе).

    Самая низкая ионизирующая способность у α-излучения.

    Заряженные частицы приводят к прямой, сильной ионизации.

    Активность (А) радиоактивного в-ва – число спонтанных ядерных превращений (dN) в этом веществе за малый промежуток времени (dt):

    1 Бк (беккерель) равен одному ядерному превращению в секунду.

    52. Ионизирующие излучения. Дозы ионизирующих излучений и единицы их измерения.

    Ионизирующее излучение (ИИ) – это излучение, взаимодействие которой со средой приводит к образованию зарядов противоположных знаков. Возникает ионизирующее излучение при радиоактивном распаде, ядерных превращениях, а также при взаимодействии заряженных частиц, нейтронов, фотонного (электромагнитного) излучения с веществом.

    Доза излучения – величина, используемая для оценки воздействия ионизирующего излучения.

    Экспозиционная доза (характеризует источник излучения по эффекту ионизации):

    Экспозиционная доза на рабочем месте при работе с радиоактивными веществами:

    где А–активность источника [мКи], К–гамма-постоянная изотопа [Рсм2/(чмКи)], t – время облучения, r – расстояние от источника до рабочего места [см ].

    Мощность дозы (интенсивность облучения) – приращение соответствующей дозы под воздействием данного излучения за ед. времени.

    Мощность экспозиционной дозы [рч -1 ].

    Поглощённая доза показывает, какое кол-во энергии ИИ поглощено ед. массы облучаемого в-ва:

    Д погл. = Д эксп. К 1

    где К 1 – коэффициент, учитывающий вид облучаемого вещества

    Поглащ. доза, Грей, [Дж/кг]=1Грей

    Эквивалентная доза хар-ет хроническое облучение излучением произвольного состава

    Н = Д Q [Зв] 1 Зв = 100 бэр.

    Q – безразмерный взвешивающий коэффициент для данного вида излучения. Для рентгеновского и -излучения Q=1, для альфа-, бета-частиц и нейтронов Q=20.

    Эффективная эквивалентная доза хар-ет чувствительность разл. органов и тканей излучению.

    Облучение неживых объектов – Поглащ. доза

    Облучение живых объектов – Эквив. доза

    53. Действие ионизирующих излучений (ИИ) на организм. Внешнее и внутреннее облучение.

    Биологический эффект ИИ основан на ионизации живой ткани, что приводит к разрыву молекулярных связей и изменению химической структуры различных соединений, что приводит к изменению ДНК клеток и их последующей гибели.

    Нарушение процессов жизнедеятельности организма выражается в таких расстройствах как

    Торможение функций кроветворных органов,

    Нарушение нормальной свертываемости крови и повышение хрупкос- ти кровеносных сосудов,

    Расстройство деятельности желудочно-кишечного тракта,

    Снижение сопротивляемости инфекциям,

    Истощение организма.

    Внешнее облучение происходит тогда, когда источник радиации нах-ся вне организма человека и отсутствуют пути их попадания внутрь.

    Внутреннее облучение происх. тогда, когда источник ИИ нах-ся внутри человека; при этом внутр. облучение также опасно близостью источника ИИ к органам и тканям.

    Пороговые эффекты (Н > 0,1 Зв/год) зависят от дозы ИИ, возникают при дозах облучения в течении всей жизни

    Лучевая болезнь – это заболевание, которое хар-ся симптомами, возникающими при воздействии ИИ, такими, как снижение кроветворной способности, расстройство желудочно-кишечного тракта, снижение иммунитета.

    Степень лучевой болезни зависит от дозы излучения. Самой тяжелой явл-ся 4-ая степень, которая возникает при воздействии ИИ дозой более 10 Грей. Хронические лучевые поражения, как правило, вызываются внутренним облучением.

    Беспороговые (стахастические) эффекты проявляются при дозах Н<0,1 Зв/год, вероятность возникновения которых не зависит от дозы излучения.

    К стахастическим эф-там относят:

    Изменения соматические

    Изменения иммунные

    Изменения генетические

    Принцип нормирования – т.е. непревышение допустимых пределов индивид. Доз облучения от всех ист-ков ИИ.

    Принцип обоснования – т.е. запрещение всех видов деятельности по исп-ю ист-ков ИИ, при которых полученная для человека и общества польза не превышает риск возможного вреда, причинённого дополнительно к естественному радиац. факту.

    Принцип оптимизации – поддержание на возможно низком и достижимом уровне с учетом экономич. и соц. факторов индивид. доз облуч-я и числа облучаемых лиц при использовании источника ИИ.

    СанПиН 2.6.1.2523-09 «Нормы радиационной безопасности».

    В соответствии с данным документом выделяют 3 гр. лиц:

    гр.А – это лица, непоср. работающие с техногенными источниками ИИ

    гр – это лица, усл-ия работы кот нах-ся в непоср. бризости от ист-ка ИИ, но деят. данных лиц непоср. с ист-ком не связано.

    гр – это всё остальное население, вкл. лиц гр. А и Б вне их производственной деятельности.

    Основной дозовый предел уст. по эффективной дозе:

    Для лиц гр.А: 20мЗв в год в ср. за последоват. 5 лет, но не более 50мЗв в год.

    Для лиц гр.Б: 1мЗв в год в ср. за последоват. 5 лет, но не более 5мЗв в год.

    Для лиц гр.В: не должны превышать ¼ значений для персонала гр.А.

    На случай ЧС, вызванной радиац.аварией сущ-ет т.н. пиковое повышенное облучение, кот. разрешается только в тех случаях, когда нет возм-ти принять меры исключающие вред организму.

    Применение таких доз м.б. оправдано только спасением жизни людей и предотвращением аварий, доп-ся только для мужчин старше 30 лет при добровольном письменном соглашении.

    М/ды защиты от ИИ:

    Защита кол-вом

    Защита временем

    Защита расст-ем

    Зонирование

    Дистанционное управление

    Экранирование

    Для защиты от γ -излучения: металлич. экраны, выполненные с большим атомным весом (W,Fe), а также из бетона, чугуна.

    Для защиты от β-излучения: исп-ют материалы с малой атомной массой (алюминий, плексиглаз).

    Для защиты от α-излучений: исп-ют металлы, содержащие Н2 (вода, парафин, и т.д.)

    Толщина экрана К=Ро/Рдоп, Ро – мощн. дозы, измеренная на рад. месте; Рдоп – предельно допустимая доза.

    Зонирование – деление территории на 3 зоны: 1) укрытие; 2) объекты и помещения, в которых могут нах-ся люди; 3) зона пост. пребывания людей.

    Дозиметрический контроль основывается на исп-ии след. методов: 1.Ионизационный 2.Фонографический 3.Химический 4.Калориметрический 5.Сцинтиляционный.

    Основные приборы , исп-ые для дозиметрич. контроля:

      Рентгенометр (для измер-я мощн. эксп. дозы)

      Радиометр (для измерения плотности потоков ИИ)

      Индивид. дозиметры (для измер-я экспозиц. или поглощённой дозы).

    Радиация - излучение (от radiare - испускать лучи) - распространение энергии в форме волн или частиц. Свет, ультрафиолетовые лучи, инфракрасное тепловое излучение, микроволны, радиоволны представляют собой разновидность радиации. Часть излучений получили название ионизирующих, благодаря своей способности вызывать ионизацию атомов и молекул в облучаемом веществе.


    Ионизирующее излучение - излучение, взаимодействие которого со средой приводит к образованию ионов разных знаков. Это поток частиц или квантов, способных прямо или косвенно вызывать ионизацию окружающей среды. Ионизирующее излучение объединяет разные по своей физической природе виды излучений. Среди них выделяются элементарные частицы (электроны, позитроны, протоны, нейтроны, мезоны и др.), более тяжелые многозарядные ионы (a-частицы, ядра бериллия, лития и других более тяжелых элементов); излучения, имеющие электромагнитную природу (g-лучи, рентгеновские лучи).


    Различают два типа ионизирующих излучений: корпускулярное и электромагнитное.


    Корпускулярное излучение - представляет собой поток частиц (корпускул), которые характеризуются определенной массой, зарядом и скоростью. Это электроны, позитроны, протоны, нейтроны, ядра атомов гелия, дейтерия и др.


    Электромагнитное излучение - поток квантов или фотонов (g-лучи, рентгеновские лучи). Оно не имеет ни массы, ни заряда.


    Различают также непосредственно и косвенно ионизирующие излучения.


    Непосредственно ионизирующее излучение - ионизирующее излучение, состоящее из заряженных частиц, имеющих кинетическую энергию, достаточную для ионизации при столкновении ( , частица и др.).


    Косвенно ионизирующее излучение - ионизирующее излучение, состоящее из незаряженных частиц, и фотонов которые могут создавать непосредственно ионизирующее излучение и (или) вызвать ядерные превращения (нейтроны, рентгеновские и g-излучения).


    Основными свойствами ионизирующих излучений является способность при прохождении через любое вещество вызывать образования большого количества свободных электронов и положительно заряженных ионов (т.е. ионизирующая способность).


    Частицы или квант высокой энергии выбивают обычно один из электронов атома, который уносит с собой единичный отрицательный заряд. При этом оставшаяся часть атома или молекулы, приобретя положительный заряд (из-за дефицита отрицательно заряженной частицы), становится положительно заряженным ионом. Это так называемая первичная ионизация.


    Выбитые при первичном взаимодействии электроны, обладая определенной энергией, сами взаимодействуют со встречными атомами, превращают их в отрицательно заряженный ион (происходит вторичная ионизация ). Электроны, которые потеряли в результате столкновений свою энергию, остаются свободными. Первый вариант (образование положительных ионов) происходит лучше всего с атомами, у которых на внешней оболочке имеется 1-3 электрона, а второй (образование отрицательных ионов) - с атомами, у которых на внешней оболочке имеется 5-7 электронов.


    Таким образом, ионизирующий эффект - главное проявление действия радиации высоких энергий на вещество. Именно поэтому радиация и называется ионизирующей (ионизирующими излучениями).


    Ионизация возникает как в молекулах неорганического вещества, так и в биологических системах. Для ионизации большинства элементов, которые входят в состав биосубстратов (это значит для образования одной пары ионов) необходимо поглощение энергии в 10-12 эВ (электрон-вольт). Это так называемый потенциал ионизации . Потенциал ионизации воздуха равен в среднем 34 эВ.


    Таким образом, ионизирующие излучения характеризуются определенной энергией излучения, измеряемой в эВ. Электрон-вольт (эВ) - это внесистемная единица энергии, которую приобретает частица с элементарным электрическим зарядом при перемещении в электрическом поле между двумя точками с разностью потенциалов в 1 вольт.


    1эВ=1,6 х 10-19 Дж = 1,6 х 10-12 эрг.


    1кэВ (килоэлектрон-вольт) = 103 эВ.


    1МэВ (мегаэлектрон-вольт) = 106 эВ.


    Зная энергию частиц, можно подсчитать, сколько пар ионов они способны образовать на пути пробега. Длина пути - полная длина траектории частицы (какой бы сложной она не была бы). Так, если частица обладает энергией в 600 кэВ, то она может образовать в воздухе около 20000 пар ионов.


    В тех случаях, когда энергии частицы (фотона) недостаточно для того, чтобы преодолел притяжение атомного ядра и вылетел за пределы атома, (энергия излучений меньше потенциала ионизации) ионизация не происходит. , приобретя излишек энергии (так называемый возбужденный ), на доли секунды переходит на более высокий энергетический уровень, а затем скачком возвращается на прежнее место и отдает излишнюю энергию в виде кванта свечения (ультрафиолетового или видимого). Переход электронов с внешних орбит на внутренние сопровождается рентгеновским излучением.


    Однако, роль возбуждения в воздействии радиации второстепенная в сравнении с ионизацией атомов, поэтому общепринято название радиации высоких энергий: «ионизирующая », что подчеркивает ее главное свойство.


    Второе название радиации - «проникающая » - характеризует способность излучений высокой энергии, прежде всего, рентгеновских и
    g-лучей, проникать в глубину вещества, в частности, в тело человека. Глубина проникновения ионизирующего излучения зависит, с одной стороны, от природы излучения, заряда составляющих его частиц и энергии, а с другой - состава и плотности облучаемого вещества.


    Ионизирующие излучения обладают определенной скоростью и энергией. Так, b-излучение и g-излучение распространяются со скоростью, близкой к скорости света. Энергия, например, a-частиц колеблется в пределах 4-9 МэВ.


    Одной из важных особенностей биологического воздействия ионизирующей радиации является невидимость, неощутимость. В этом и заключается их опасность, человек ни визуально, ни органолептически не может обнаружить воздействие излучений. В отличие от лучей оптического диапазона и даже радиоволн, которые вызывают в определенных дозах нагревание тканей и ощущение тепла, ионизирующие излучения даже в смертельных дозах нашими органами чувств не фиксируется. Правда, у космонавтов наблюдались косвенные проявления действия ионизирующей радиации - ощущение вспышек при закрытых глазах - за счет массивной ионизации в сетчатке глаза. Таким образом, ионизация и возбуждение - основные процессы, в которых тратится энергия излучений, поглощаемая в облучаемом объекте.


    Возникшие ионы исчезают в процессе рекомбинации, это значит воссоединения положительных и отрицательных ионов, в котором образуются нейтральные атомы. Как правило, процесс сопровождается образованием возбуждаемых атомов.


    Реакции с участием ионов и возбужденных атомов имеют чрезвычайно важное значение. Они лежат в основе многих химических процессов, в том числе и биологически важных. С ходом этих реакций связываются отрицательные результаты воздействия радиации на организм человека.

    Под словом «радиация» чаще понимают ионизирующее излучение, связанное с радиоактивным распадом. При этом человек испытывает действие и неионизирующих видов излучения: электромагнитного и ультрафиолетового.

    Основными источниками радиации являются:

    • природные радиоактивные вещества вокруг и внутри нас - 73%;
    • медицинские процедуры (рентгеноскопия и прочие) - 13%;
    • космическое излучение - 14%.

    Конечно, существуют техногенные источники загрязнений, появившиеся в результате крупных аварий. Это наиболее опасные для человечества события, поскольку, как и при ядерном взрыве, в таком случае может выделяться йод (J-131), цезий (Cs-137) и стронций (в основном Sr-90). Оружейный плутоний (Pu-241) и продукты его распада не менее опасны.

    Также не стоит забывать, что последние 40 лет атмосфера Земли очень сильно загрязнялась радиоактивными продуктами атомных и водородных бомб. Конечно, на данный момент радиоактивные осадки выпадают только в связи с природными катаклизмами, например при извержении вулканов. Но, с другой стороны, при делении ядерного заряда в момент взрыва образуется радиоактивный изотоп углерода-14 с периодом полураспада 5 730 лет. Взрывы изменили равновесное содержание в атмосфере углерода-14 на 2,6%. В настоящее время средняя мощность эффективной эквивалентной дозы, обусловленная продуктами взрывов, составляет около 1 мбэр/год, что равно примерно 1% от мощности дозы, обусловленной естественным радиационным фоном.

    mos-rep.ru

    Энергетика - это ещё одна причина серьёзного накопления радионуклидов в организме человека и животных. Каменные угли, используемые для работы ТЭЦ, содержат естественные радиоактивные элементы, такие как калий-40, уран-238 и торий-232. Годовая доза в районе ТЭЦ на угле составляет 0,5–5 мбэр/год. Кстати, атомные электростанции характеризуются значительно меньшими выбросами.

    Медицинским процедурам с использованием источников ионизирующего излучения подвергаются почти все жители Земли. Но это более сложный вопрос, к которому мы вернёмся чуть позже.

    В каких единицах измеряется радиация

    Для измерения количества энергии излучения используют различные единицы. В медицине основной является зиверт - эффективная эквивалентная доза, полученная за одну процедуру всем организмом. Именно в зивертах на единицу времени измеряют уровень радиационного фона. Беккерель служит единицей измерения радиоактивности воды, почвы и так далее на единицу объёма.

    С прочими единицами измерения можно ознакомиться в таблице.

    Термин

    Единицы измерения

    Соотношение единиц

    Определение

    В системе СИ

    В старой системе

    Активность

    Беккерель, Бк

    1 Ки = 3,7 × 10 10 Бк

    Число радиоактивных распадов в единицу времени

    Мощность дозы

    Зиверт в час, Зв/ч

    Рентген в час, Р/ч

    1 мкР/ч = 0,01 мкЗв/ч

    Уровень излучения в единицу времени

    Поглощённая доза

    Радиан, рад

    1 рад = 0,01 Гр

    Количество энергии ионизирующего излучения, переданное определённому объекту

    Эффективная доза

    Зиверт, Зв

    1 рем = 0,01 Зв

    Доза облучения, учитывающая различную

    чувствительность органов к радиации

    Последствия облучения

    Воздействие радиации на человека называют облучением. Основное его проявление - острая лучевая болезнь, которая имеет различные степени тяжести. Лучевая болезнь может проявиться при облучении дозой, равной 1 зиверту. Доза в 0,2 зиверта увеличивает риск раковых заболеваний, а в 3 зиверта - угрожает жизни облучённого.

    Лучевая болезнь проявляется в виде следующих симптомов: потеря сил, понос, тошнота и рвота; сухой, надсадный кашель; нарушения сердечной деятельности.

    Кроме этого, облучение вызывает лучевые ожоги. Очень большие дозы приводят к отмиранию кожи, вплоть до повреждения мышц и костей, что лечится гораздо хуже, чем химические или тепловые ожоги. Вместе с ожогами могут появиться нарушения обмена веществ, инфекционные осложнения, лучевое бесплодие, лучевая катаракта.

    Последствия облучения могут проявить себя через длительное время - это так называемый стохастический эффект. Он выражается в том, что среди облучённых людей может увеличиваться частота определённых онкологических заболеваний. Теоретически возможны также генетические эффекты, однако даже среди 78 тысяч детей японцев, которые пережили атомную бомбардировку Хиросимы и Нагасаки, не обнаружили увеличения числа случаев наследственных болезней. И это несмотря на то, что последствия облучения сильнее сказываются на делящихся клетках, поэтому для детей облучение гораздо опаснее, чем для взрослых.

    Кратковременное облучение малыми дозами, применяемое для обследований и лечения некоторых заболеваний, порождает интересный эффект под названием гормезис. Это стимуляция какой-либо системы организма внешними воздействиями, имеющими силу, недостаточную для проявления вредных факторов. Данный эффект позволяет организму мобилизовать силы.

    Статистически радиация может повышать уровень онкологии, однако очень сложно выявить прямое влияние излучения, отделив его от действия химически вредных веществ, вирусов и прочего. Известно, что после бомбардировки Хиросимы первые эффекты в виде учащения заболеваемости стали проявляться только через 10 лет и более. Напрямую с облучением связан рак щитовидной железы, молочной железы и определённых частей .


    chornobyl.in.ua

    Естественный радиационный фон составляет порядка 0,1–0,2 мкЗв/ч. Считается, что постоянный фоновый уровень выше 1,2 мкЗв/ч опасен для человека (нужно различать мгновенно поглощённую дозу облучения и постоянную фоновую). Много ли это? Для сравнения: уровень радиации на расстоянии 20 км от японской атомной электростанции «Фукусима-1» в момент аварии превысил норму в 1 600 раз. Максимальный зафиксированный уровень излучения на этом расстоянии - 161 мкЗв/ч. После взрыва на уровень радиации доходил до нескольких тысяч микрозивертов в час.

    За время 2–3-часового перелёта над экологически чистой территорией человек получает облучение в 20–30 мкЗв. Та же доза облучения грозит в том случае, если человеку в один день делают 10–15 снимков современным рентгенографическим аппаратом - визиографом. Пара часов перед электронно-лучевым монитором или телевизором дают ту же дозу облучения, что и один такой снимок. Годовая доза от курения по одной сигарете в день - 2,7 мЗв. Одна флюорография - 0,6 мЗв, одна рентгенография - 1,3 мЗв, одна рентгеноскопия - 5 мЗв. Излучение от бетонных стен - до 3 мЗв в год.

    При облучении всего тела и для первой группы критических органов (сердце, лёгкие, мозг, поджелудочная железа и прочие) нормативные документы устанавливают максимальное значение дозы в 50 000 мкЗв (5 бэр) в год.

    Острая лучевая болезнь развивается при дозе однократного облучения в 1 000 000 мкЗв (25 000 цифровых флюорографий, 1 000 рентгенографий позвоночника в один день). Большие дозы влияют ещё сильнее:

    • 750 000 мкЗв - кратковременное незначительное изменение состава крови;
    • 1 000 000 мкЗв - лёгкая степень лучевой болезни;
    • 4 500 000 мкЗв - тяжёлая степень лучевой болезни (погибает 50% облучённых);
    • около 7 000 000 мкЗв - смерть.

    Опасны ли рентгенологические исследования


    Чаще всего с облучением мы сталкиваемся во время медицинских исследований . Однако дозы, которые мы получаем в процессе, настолько малы, что бояться их не стоит. Время облучения старинным рентгеновским аппаратом составляет 0,5–1,2 секунды. А с современным визиографом всё происходит в 10 раз быстрее: за 0,05–0,3 секунды.

    Согласно медицинским требованиям, изложенным в СанПиН 2.6.1.1192-03 , при проведении профилактических медицинских рентгенологических процедур доза радиации не должна превышать 1 000 мкЗв в год. Сколько это в снимках? Довольно много:

    • 500 прицельных снимков (2–3 мкЗв), полученных с помощью радиовизиографа;
    • 100 таких же снимков, но с использованием хорошей рентгеновской плёнки (10–15 мкЗв);
    • 80 цифровых ортопантомограмм (13–17 мкЗв);
    • 40 плёночных ортопантомограмм (25–30 мкЗв);
    • 20 компьютерных томограмм (45–60 мкЗв).

    То есть если каждый день в течение всего года делать по одному снимку на визиографе, добавить к этому пару-тройку компьютерных томограмм и столько же ортопантомограмм, то даже в этом случае мы не выйдем за пределы разрешённых доз.

    Кому нельзя облучаться

    Однако существуют люди, которым даже такие виды облучения строго запрещены. Согласно утверждённым в России стандартам (СанПиН 2.6.1.1192-03), облучение в виде рентгенографии можно проводить только во второй половине беременности за исключением случаев, когда должен решаться вопрос об аборте или необходимости оказания скорой или неотложной помощи.

    Пункт 7.18 документа гласит: «Рентгенологические исследования беременных проводятся с использованием всех возможных средств и способов защиты таким образом, чтобы доза, полученная плодом, не превысила 1 мЗв за два месяца невыявленной беременности. В случае получения плодом дозы, превышающей 100 мЗв, врач обязан предупредить пациентку о возможных последствиях и рекомендовать прервать беременность».

    Молодым людям, которым в будущем предстоит стать родителями, необходимо закрывать от облучения брюшную область и половые органы. Рентгеновское излучение наиболее негативно действует на клетки крови и половые клетки. У детей вообще должно быть экранировано всё тело, кроме исследуемой области, а проводиться исследования должны только при необходимости и по назначению врача.

    Сергей Нелюбин, заведующий отделением рентгенодиагностики РНЦХ им. Б. В. Петровского, кандидат медицинских наук, доцент

    Как защититься

    Главных методов защиты от рентгеновского излучения три: защита временем, защита расстоянием и экранирование. То есть чем меньше вы находитесь в зоне действия рентгеновских лучей и чем дальше вы от источника излучения, тем меньше доза облучения.

    Хотя безопасная доза лучевой нагрузки рассчитана на год, всё же не стоит в один день делать несколько рентгенологических исследований, например флюорографию и . Ну и у каждого больного должен быть радиационный паспорт (он вкладывается в медицинскую карточку): в него врач-рентгенолог заносит информацию о полученной при каждом обследовании дозе.

    Рентгенография прежде всего влияет на железы внутренней секреции, лёгкие. То же касается и небольших доз облучения при авариях и выбросах активных веществ. Поэтому в качестве профилактики врачи рекомендуют дыхательные упражнения. Они помогут очистить лёгкие и активизировать резервы организма.

    Для нормализации внутренних процессов организма и вывода вредных веществ стоит употреблять больше антиоксидантов: витаминов А, С, Е (красное вино, виноград). Полезны сметана, творог, молоко, зерновой хлеб, отруби, необработанный рис, чернослив.

    В том случае, если продукты питания внушают определённые опасения, можно воспользоваться рекомендациями для жителей регионов, затронутых в результате аварии на Чернобыльской АЭС.

    »
    При реальном облучении вследствие аварии или в заражённой зоне необходимо сделать довольно много. Сначала нужно провести дезактивацию: быстро и аккуратно снять одежду и обувь с носителями радиации, правильно утилизировать её или хотя бы удалить радиоактивную пыль со своих вещей и окружающих поверхностей. Достаточно помыть тело и одежду (по отдельности) под проточной водой с использованием моющих средств.

    До или после воздействия радиации используют пищевые добавки и препараты против радиации. Наиболее известны лекарства с высоким содержанием йода, который помогает эффективно бороться с негативным воздействием его радиоактивного изотопа, локализующегося в щитовидной железе. Для блокировки накопления радиоактивного цезия и недопущения вторичного поражения используют «Калия оротат». Добавки с кальцием дезактивируют радиоактивный препарат стронция на 90%. Для защиты клеточных структур и показан диметилсульфид.

    Кстати, всем известный активированный уголь может нейтрализовать действие радиации. Да и польза употребления водки сразу после облучения вовсе не миф. Это действительно помогает вывести радиоактивные изотопы из организма в простейших случаях.

    Только не стоит забывать: самостоятельное лечение должно проводиться только при невозможности своевременно обратиться к врачу и только в случае реального, а не выдуманного облучения. Рентген-диагностика, просмотр телевизора или полёт на самолёте не влияют на здоровье среднестатистического жителя Земли.

    Ионизирующие излучения (ИИ) - потоки элементарных частиц (электронов, позитронов, протонов, нейтронов) и квантов электромагнитной энергии, прохождение которых через вещество приводит к ионизации (образованию разнополярных ионов) и возбуждению его атомов и молекул. Ионизация - превращение нейтральных атомов или молекул в электрически заряженные частицы – ионы.ьИИ попадают на Землю в виде космических лучей, возникают в результате радиоактивного распада атомных ядер (απ β-частицы, γ– и рентгеновские лучи), создаются искусственно на ускорителях заряженных частиц. Практический интерес представляют наиболее часто встречающиеся виды ИИ – потоки а– и β-частиц, γ-излучение, рентгеновские лучи и потоки нейтронов.

    Альфа-излучение (а) – поток положительно заряженных частиц – ядер гелия. В настоящее время известно более 120 искусственных и естественных альфа-радиоактивных ядер, которые, испуская α-частицу, теряют 2 протона и 2 нейтрона. Скорость частиц при распаде составляет 20 тыс. км/с. При этом α-частицы обладают наименьшей проникающей способностью, длина их пробега (расстояние от источника до поглощения) в теле равна 0,05 мм, в воздухе – 8–10 см. Они не могут пройти даже через лист бумаги, но плотность ионизации на единицу величины пробега очень велика (на 1 см до десятка тысяч пар), поэтому эти частицы обладают наибольшей ионизирующей способностью и опасны внутри организма.

    Бета-излучение (β) – поток отрицательно заряженных частиц. В настоящее время известно около 900 бета-радиоактивных изотопов. Масса β-частиц в несколько десятков тысяч раз меньше α-частиц, но они обладают бо́льшей проникающей способностью. Их скорость равна 200–300 тыс. км/с. Длина пробега потока от источника в воздухе составляет 1800 см, в тканях человека – 2,5 см. β-частицы полностью задерживаются твердыми материалами (алюминиевой пластиной в 3,5 мм, органическим стеклом); их ионизирующая способность в 1000 раз меньше, чем у α-частиц.

    Гамма-излучение (γ) – электромагнитное излучение с длиной волны от 1 · 10 -7 м до 1 · 10 -14 м; испускается при торможении быстрых электронов в веществе. Оно возникает при распаде большинства радиоактивных веществ и обладает большой проникающей способностью; распространяется со скоростью света. В электрических и магнитных полях γ-лучи не отклоняются. Это излучение обладает меньшей ионизирующей способностью, чем а– и β-излучение, так как плотность ионизации на единицу длины очень низкая.

    Рентгеновское излучение может быть получено в специальных рентгеновских трубках, в электронных ускорителях, при торможении быстрых электронов в веществе и при переходе электронов с внешних электронных оболочек атома на внутренние, когда создаются ионы. Рентгеновские лучи, как и γ-излучение, обладают малой ионизирующей способностью, но большой глубиной проникновения.

    Нейтроны - элементарные частицы атомного ядра, их масса в 4 раза меньше массы α-частиц. Время их жизни – около 16 мин. Нейтроны не имеют электрического заряда. Длина пробега медленных нейтронов в воздухе составляет около 15 м, в биологической среде – 3 см; для быстрых нейтронов – соответственно 120 м и 10 см. Последние обладают высокой проникающей способностью и представляют наибольшую опасность.

    Выделяют два вида ионизирующих излучений:

    Корпускулярное, состоящее из частиц с массой покоя, отличной от нуля (α-, β– и нейтронное излучения);

    Электромагнитное (γ– и рентгеновское излучение) – с очень малой длиной волны.

    Для оценки воздействия ионизирующего излучения на любые вещества и живые организмы используются специальные величины – дозы излучения. Основная характеристика взаимодействия ионизирующего излучения и среды – это ионизационный эффект. В начальный период развития радиационной дозиметрии чаще всего приходилось иметь дело с рентгеновским излучением, распространявшимся в воздухе. Поэтому в качестве количественной меры поля излучения использовалась степень ионизации воздуха рентгеновских трубок или аппаратов. Количественная мера, основанная на величине ионизации сухого воздуха при нормальном атмосферном давлении, достаточно легко поддающаяся измерению, получила название экспозиционная доза.

    Экспозиционная доза определяет ионизирующую способность рентгеновских и γ-лучей и выражает энергию излучения, преобразованную в кинетическую энергию заряженных частиц в единице массы атмосферного воздуха. Экспозиционная доза – это отношение суммарного заряда всех ионов одного знака в элементарном объеме воздуха к массе воздуха в этом объеме. В системе СИ единицей измерения экспозиционной дозы является кулон, деленный на килограмм (Кл/кг). Внесистемная единица – рентген (Р). 1 Кл/кг = 3880 Р. При расширении круга известных видов ионизирующего излучения и сфер его приложения оказалось, что мера воздействия ионизирующего излучения на вещество не поддается простому определению из-за сложности и многообразности протекающих при этом процессов. Важнейшим из них, дающим начало физико-химическим изменениям в облучаемом веществе и приводящим к определенному радиационному эффекту, является поглощение энергии ионизирующего излучения веществом. В результате этого возникло понятие поглощенная доза.

    Поглощенная доза показывает, какое количество энергии излучения поглощено в единице массы любого облучаемого вещества, и определяется отношением поглощенной энергии ионизирующего излучения на массу вещества. За единицу измерения поглощенной дозы в системе СИ принят грэй (Гр). 1 Гр – это такая доза, при которой массе 1 кг передается энергия ионизирующего излучения 1 Дж. Внесистемной единицей поглощенной дозы является рад. 1 Гр = 100 рад. Изучение отдельных последствий облучения живых тканей показало, что при одинаковых поглощенных дозах различные виды радиации производят неодинаковое биологическое воздействие на организм. Обусловлено это тем, что более тяжелая частица (например, протон) производит на единице пути в ткани больше ионов, чем легкая (например, электрон). При одной и той же поглощенной дозе радиобиологический разрушительный эффект тем выше, чем плотнее ионизация, создаваемая излучением. Чтобы учесть этот эффект, было введено понятие эквивалентной дозы.

    Эквивалентная доза рассчитывается путем умножения значения поглощенной дозы на специальный коэффициент – коэффициент относительной биологической эффективности (ОБЭ) или коэффициент качества. Значения коэффициента для различных видов излучений приведены в табл. 7.

    Таблица 7

    Коэффициент относительной биологической эффективности для различных видов излучений

    Единицей измерения эквивалентной дозы в СИ является зиверт (Зв). Величина 1 Зв равна эквивалентной дозе любого вида излучения, поглощенной в 1 кг биологической ткани и создающей такой же биологический эффект, как и поглощенная доза в 1 Гр фотонного излучения. Внесистемной единицей измерения эквивалентной дозы является бэр (биологический эквивалент рада). 1 Зв = 100 бэр. Одни органы и ткани человека более чувствительны к действию радиации, чем другие: например, при одинаковой эквивалентной дозе возникновение рака в легких более вероятно, чем в щитовидной железе, а облучение половых желез особенно опасно из-за риска генетических повреждений. Поэтому дозы облучения разных органов и тканей следует учитывать с разным коэффициентом, который называется коэффициентом радиационного риска. Умножив значение эквивалентной дозы на соответствующий коэффициент радиационного риска и просуммировав по всем тканям и органам, получим эффективную дозу, отражающую суммарный эффект для организма. Взвешенные коэффициенты устанавливают эмпирически и рассчитывают таким образом, чтобы их сумма для всего организма составляла единицу. Единицы измерения эффективной дозы совпадают с единицами измерения эквивалентной дозы. Она также измеряется в зивертах или бэрах.